cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A029863 Expansion of Product_{k >= 1} 1/(1-x^k)^c(k), where c(1), c(2), ... = 2 3 2 3 2 3 2 3 ....

Original entry on oeis.org

1, 2, 6, 12, 27, 50, 98, 172, 310, 522, 888, 1444, 2357, 3724, 5882, 9072, 13957, 21082, 31732, 47072, 69545, 101540, 147620, 212516, 304631, 433054, 613030, 861616, 1206089, 1677766, 2324844, 3203748, 4398602, 6009390, 8181250
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there are 2 kinds of odd parts and 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018

Examples

			G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 27*x^4 + 50*x^5 + 98*x^6 + 172*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 20 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A)^2 * eta(x^2 + A)), n))};

Formula

Euler transform of period 2 sequence [2, 3, ...].
a(n) ~ 5 * exp(sqrt(5*n/3)*Pi) / (48 * n^(3/2)). - Vaclav Kotesovec, Sep 20 2015
G.f.: Product_{k >= 1} 1/(1-x^k)^A010693(k-1). - Georg Fischer, Dec 10 2020

A261998 Expansion of Product_{k>=1} (1-x^k)*(1+x^k)^4.

Original entry on oeis.org

1, 3, 5, 10, 17, 26, 43, 65, 95, 140, 201, 283, 395, 545, 740, 1002, 1343, 1780, 2350, 3077, 4002, 5183, 6670, 8535, 10880, 13801, 17426, 21925, 27475, 34297, 42677, 52926, 65415, 80625, 99077, 121403, 148386, 180890, 219960, 266857, 323002, 390086, 470125
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 08 2015

Keywords

Comments

In general, if m > 2 and g.f. = Product_{k>=1} (1-x^k)*(1+x^k)^m, then a(n) ~ exp(Pi*sqrt((m-2)*n/3)) / (2^((m+1)/2) * sqrt(n)).
Equals A000009 convolved with A085140. - George Beck, Jul 03 2016

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[(1 - x^k) * (1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(5/2) * sqrt(n)).
Showing 1-2 of 2 results.