A262387 Denominators of a semi-convergent series leading to the third Stieltjes constant gamma_3.
1, 120, 1008, 28800, 49896, 101088000, 5702400, 12350257920000, 43480172736000, 7075668600000, 206069667148800, 5919216795588096000, 581222138112000, 8460252005694128640000, 18991807088644406016000, 1150594272774401495040000, 33940540399314092544000, 9737059611553100811150566400000, 1290633707289706940160000, 1263402804161736165764268432000000
Offset: 1
Examples
Denominators of -0/1, 1/120, -17/1008, 967/28800, -4523/49896, 33735311/101088000, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, 2015.
Crossrefs
Programs
-
Mathematica
a[n_] := Denominator[-BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^3 - 3*HarmonicNumber[2*n - 1]*HarmonicNumber[2*n - 1, 2] + 2*HarmonicNumber[2*n - 1, 3])/(2*n)]; Table[a[n], {n, 1, 20}]
-
PARI
a(n) = denominator(-bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^3 -3*sum(k=1,2*n-1,1/k)*sum(k=1,2*n-1,1/k^2) + 2*sum(k=1,2*n-1,1/k^3))/(2*n));
Formula
a(n) = denominator(-B_{2n}*(H^3_{2n-1}-3*H_{2n-1}*H^(2){2n-1}+2*H^(3){2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.
Comments