A262420 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.
2, 0, 5, 6, 4, 10, 0, 45, 12, 21, 22, 114, 270, 48, 42, 0, 709, 1260, 1701, 144, 85, 86, 2892, 15310, 18228, 10206, 468, 170, 0, 15293, 124572, 428301, 200880, 61965, 1404, 341, 342, 72370, 1299070, 7577424, 9401742, 2353338, 371790, 4320, 682, 0, 367125
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..0..1..1....1..1..1..1..0....0..0..1..1..0....1..1..0..0..0 ..1..1..0..1..1....0..0..1..1..0....1..0..0..1..0....1..0..0..1..0 ..1..0..1..0..1....1..1..1..1..0....1..1..1..1..0....0..0..1..1..0 ..1..1..1..1..0....1..1..0..0..0....1..0..1..0..1....1..1..0..1..1 ..1..0..1..0..1....1..0..1..0..1....0..0..0..0..0....0..1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..240
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3)
k=3: a(n) = 6*a(n-1) +9*a(n-2) -54*a(n-3)
k=4: [order 7]
k=5: [order 11]
k=6: [order 13]
k=7: [order 19]
Empirical for row n:
n=1: a(n) = 5*a(n-2) -4*a(n-4)
n=2: a(n) = 5*a(n-1) +12*a(n-2) -60*a(n-3) -39*a(n-4) +195*a(n-5) +28*a(n-6) -140*a(n-7)
n=3: [order 9]
n=4: [order 11]
n=5: [order 11]
n=6: [order 17]
n=7: [order 21]
Comments