cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262420 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

2, 0, 5, 6, 4, 10, 0, 45, 12, 21, 22, 114, 270, 48, 42, 0, 709, 1260, 1701, 144, 85, 86, 2892, 15310, 18228, 10206, 468, 170, 0, 15293, 124572, 428301, 200880, 61965, 1404, 341, 342, 72370, 1299070, 7577424, 9401742, 2353338, 371790, 4320, 682, 0, 367125
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Table starts
....2.....0........6...........0.............22.................0
....5.....4.......45.........114............709..............2892
...10....12......270........1260..........15310............124572
...21....48.....1701.......18228.........428301...........7577424
...42...144....10206......200880........9401742.........326005344
...85...468....61965.....2353338......220808869.......15231780324
..170..1404...371790....25901100.....4856629870......655089996204
..341..4320..2237301...289462380...108673357501....28755516792360
..682.12960.13423806..3184570800..2390753728462..1236553617638640
.1365.39204.80601885.35172555474.52824430238229.53446495303862172

Examples

			Some solutions for n=4 k=4
..1..1..0..1..1....1..1..1..1..0....0..0..1..1..0....1..1..0..0..0
..1..1..0..1..1....0..0..1..1..0....1..0..0..1..0....1..0..0..1..0
..1..0..1..0..1....1..1..1..1..0....1..1..1..1..0....0..0..1..1..0
..1..1..1..1..0....1..1..0..0..0....1..0..1..0..1....1..1..0..1..1
..1..0..1..0..1....1..0..1..0..1....0..0..0..0..0....0..1..1..0..0
		

Crossrefs

Column 1 is A000975(n+1).
Row 1 is A047849((n+1)/2) for odd n.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3)
k=3: a(n) = 6*a(n-1) +9*a(n-2) -54*a(n-3)
k=4: [order 7]
k=5: [order 11]
k=6: [order 13]
k=7: [order 19]
Empirical for row n:
n=1: a(n) = 5*a(n-2) -4*a(n-4)
n=2: a(n) = 5*a(n-1) +12*a(n-2) -60*a(n-3) -39*a(n-4) +195*a(n-5) +28*a(n-6) -140*a(n-7)
n=3: [order 9]
n=4: [order 11]
n=5: [order 11]
n=6: [order 17]
n=7: [order 21]