A262432 Regular triangle read by rows: T(n, k) gives the number of times that the denominator of sigma(x,-1) (A017666) is equal to k when x goes from 1 to n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1
Offset: 1
Examples
The first 6 terms of A017666 are 1, 2, 3, 4, 5, 1 where 1 appears twice, 2 to 5 appear once and 6 is absent; giving the 6th row: 2, 1, 1, 1, 1, 0. Triangle starts 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, 1, 1; 2, 1, 1, 1, 1, 0; 2, 1, 1, 1, 1, 0, 1; 2, 1, 1, 1, 1, 0, 1, 1; 2, 1, 1, 1, 1, 0, 1, 1, 1; 2, 1, 1, 1, 2, 0, 1, 1, 1, 0; ...
Links
- Michel Marcus, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
Table[Length@ Select[Range@ n, Denominator[DivisorSigma[-1, #]] == k &], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Sep 22 2015 *)
-
PARI
tabl(nn) = {vds = vector(nn, n, denominator(sigma(n,-1))); for (n=1, nn, vin = vector(n, k, vds[k]); rown = vector(n, k, #select(x->x==k, vin)); for(k=1, n, print1(rown[k], ", ")); print(););}
Comments