cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262432 Regular triangle read by rows: T(n, k) gives the number of times that the denominator of sigma(x,-1) (A017666) is equal to k when x goes from 1 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Michel Marcus, Sep 22 2015

Keywords

Comments

The sum of terms of the n-th row is n.
T(n, n) = 1 when n is in A014567.
T(n, n) = 0 when n is in A069059.
T(n, 1) increases when n is a multiperfect number A007691.
For a given k, the first index n for which T(n,k) = 1 is A162657(k).

Examples

			The first 6 terms of A017666 are 1, 2, 3, 4, 5, 1 where 1 appears twice, 2 to 5 appear once and 6 is absent; giving the 6th row: 2, 1, 1, 1, 1, 0.
Triangle starts
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
2, 1, 1, 1, 1, 0;
2, 1, 1, 1, 1, 0, 1;
2, 1, 1, 1, 1, 0, 1, 1;
2, 1, 1, 1, 1, 0, 1, 1, 1;
2, 1, 1, 1, 2, 0, 1, 1, 1, 0;
...
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ Select[Range@ n, Denominator[DivisorSigma[-1, #]] == k &], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Sep 22 2015 *)
  • PARI
    tabl(nn) = {vds = vector(nn, n, denominator(sigma(n,-1))); for (n=1, nn, vin = vector(n, k, vds[k]); rown = vector(n, k, #select(x->x==k, vin)); for(k=1, n, print1(rown[k], ", ")); print(););}