cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262446 Number of ways to write A262439(n) = A262439(k) + A262439(m) with 0 < k < m < n.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 2, 2, 3, 3, 1, 3, 4, 2, 3, 2, 3, 2, 4, 3, 1, 2, 3, 3, 6, 4, 3, 2, 4, 4, 4, 3, 5, 4, 2, 5, 5, 4, 6, 4, 5, 6, 6, 4, 5, 5, 3, 5, 3, 6, 6, 5, 4, 1, 4, 5, 9, 5, 3, 7, 5, 3, 5, 5, 3, 8, 4, 5, 3, 7, 5, 8, 5, 7, 6, 6, 7, 5, 6, 5, 7, 4, 8, 6, 6, 6, 2, 5, 4, 11, 5, 3, 5, 7, 7, 7, 9, 5, 8, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 23 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3, and a(n) = 1 only for n = 4, 6, 11, 21, 54, 253, 325.
This is slightly stronger than part (ii) of the conjecture in A262439.
I have verified the conjecture for n up to 10^5. - Zhi-Wei Sun, Sep 27 2015

Examples

			a(4) = 1 since pi(4*5/2+1) = pi(11) = 5 = 1 + 4 = pi(2) + pi(7) = pi(1*2/2+1) + pi(3*4/2+1).
a(6) = 1 since pi(6*7/2+1) = pi(22) = 8 = 2 + 6 = pi(4) + pi(16) = pi(2*3/2+1) + pi(5*6/2+1).
a(11) = 1 since pi(11*12/2+1) = pi(67) = 19 = 5 + 14 = pi(11) + pi(46) = pi(4*5/2+1) + pi(9*10/2+1).
a(21) = 1 since pi(21*22/2+1) = pi(232) = 50 = 14 + 36 = pi(46) + pi(154) = pi(9*10/2+1) + pi(17*18/2+1).
a(54) = 1 since pi(54*55/2+1) = pi(1486) = 235 = 30 + 205 = pi(121) + pi(1276) = pi(15*16/2+1) + pi(50*51/2+1).
a(253) = 1 since pi(253*254/2+1) = pi(32132) = 3447 = 747 + 2700 = pi(5672) + pi(24311) = pi(106*107/2+1) + pi(220*221/2+1).
a(325) = 1 since pi(325*326/2+1) = pi(52976) = 5406 = 1446 + 3960 = pi(12091) + pi(37402) = pi(155*156/2+1) + pi(37402*37403/2+1).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. (Cf. Section C6 on addition chains.)
  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n(n+1)/2+1]
    T[n_]:=Table[f[k],{k,1,n}]
    Do[r=0;Do[If[2*f[k]>=f[n],Goto[aa]];If[MemberQ[T[n],f[n]-f[k]],r=r+1];Continue,{k,1,n-1}];Label[aa];Print[n," ",r];Continue,{n,1,100}]