A262494
Triangle read by rows: T(n,k) (n>=1, 0<=k
1, 1, 1, 1, 4, 1, 1, 13, 8, 2, 1, 41, 49, 23, 6, 1, 131, 276, 198, 90, 24, 1, 428, 1509, 1556, 982, 444, 120, 1, 1429, 8184, 11812, 9678, 5856, 2640, 720, 1, 4861, 44473, 88566, 91959, 68820, 40800, 18360, 5040, 1, 16795, 243334, 662732, 863296, 775134, 555828, 325200, 146160, 40320
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 4, 1; 1, 13, 8, 2; 1, 41, 49, 23, 6; 1, 131, 276, 198, 90, 24; 1, 428, 1509, 1556, 982, 444, 120; 1, 1429, 8184, 11812, 9678, 5856, 2640, 720; 1, 4861, 44473, 88566, 91959, 68820, 40800, 18360, 5040; ...
Links
- FindStat - Combinatorial Statistic Finder, The number of stack-sorts needed to sort a permutation
- Julian West, Permutations with forbidden subsequences; and, stack-sortable permutations, Ph.D. thesis, Massachusetts Institute of Technology, Dept. of Mathematics, 1990. See p. 76.
Formula
T(n,0) = 1, T(n,1) = A000108(n) - 1. - Joerg Arndt, Sep 27 2015
Extensions
Definition edited by N. J. A. Sloane, Oct 13 2015
More terms from Christian Stump, Oct 19 2015
Rows n=7-10 from Julian West's thesis added by Alois P. Heinz, Jun 27 2023
Comments