cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262529 Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order such that sorts of adjacent parts are different.

Original entry on oeis.org

1, 1, 4, 31, 464, 10423, 307123, 11087757, 471750268, 23064505722, 1272685923725, 78185947269685, 5290601944971906, 390900941750607195, 31309282176759170370, 2701913799542547998709, 249913023732255442857064, 24663493072687443375499678
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2015

Keywords

Examples

			a(2) = 4: 3a1b, 2a2b, 2a1b1a, 1a1b1a1b.
		

Crossrefs

Cf. A262495.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
    a:= n-> add(A(2*n, n-i)*(-1)^i/(i!*(n-i)!), i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n-1), b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n == 0, 1, If[k<2, k, k*b[n, n, k-1]]]; a[n_] := Sum[A[2*n, n-i]*(-1)^i/(i!*(n-i)!), {i, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)

Formula

a(n) = A262495(2n,n).
a(n) ~ 2^(2*n-2) * (n-1)! / (Pi * sqrt(1-c) * c^(n-1) * (2-c)^n), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599076769581241... - Vaclav Kotesovec, Oct 25 2018