A262536 Positive integers z such that pi(x^3+y^3) = pi(z^3) for some 0 < x <= y < z, where pi(m) denotes the number of primes not exceeding m.
7, 9, 11, 12, 34, 46, 49, 65, 89, 95, 103, 127, 144, 150, 163, 172, 206, 236, 249, 258, 275, 288, 300, 309, 312, 385, 492, 495, 505, 577, 641, 683, 729, 738, 751, 796, 835, 873, 904, 990, 995, 1010, 1154, 1210, 1297, 1312, 1403, 1458, 1476, 1502, 1544, 1626, 1661, 1731, 1808, 1852, 1985, 1988, 2020, 2059, 2107, 2214, 2304, 2316, 2370, 2448, 2594, 2833, 2840, 2883, 2920, 3073, 3088, 3097
Offset: 1
Keywords
Examples
a(1) = 7 since pi(5^3+6^3) = pi(125+216) = pi(341) = 68 = pi(343) = pi(7^3). a(2) = 9 since pi(6^3+8^3) = pi(216+512) = pi(728) = 129 = pi(729) = pi(9^3). a(50) = 1502 since pi(300^3+1498^3) = pi(27000000+3361517992) = pi(3388517992) = 162202081 = pi(3388518008) = pi(1502^3).
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..446
- M. Beck, E. Pine, W. Tarrant and K. Y. Jensen, New integer representations as the sum of three cubes, Math. Comp. 76(2007), 1683-1690.
- V. L. Gardiner, R. B. Lazarus, P. R. Stein, Solutions of the diophantine equation x^3+y^3=z^3-d, Math. Comp. 18 (1964) 408-413
- K. Mahler, Note on hypothesis K of Hardy and Littlewood, J. London Math. Soc. 11(1936), 136-138.
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
- A. J. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. Math. 141 (1995), 443-551.
Programs
-
Mathematica
pi[n_]:=PrimePi[n] n=0;Do[Do[If[pi[x^3+y^3]==pi[z^3],n=n+1;Print[n," ",z];Goto[aa]],{x,1,z-1},{y,x,z-1}];Label[aa];Continue,{z,1,2700}]
Comments