A262698 Positive integers m such that pi(k^3) + pi(m^3) is a cube for some k = 1,...,m, where pi(x) denotes the number of primes not exceeding x.
1, 2, 4, 24, 41, 51, 88, 95, 99, 179, 183, 663, 782, 829, 1339, 2054, 2816, 7918, 8474, 13264, 16664, 27415, 39514, 48606, 51145, 187222, 200906, 261980, 353209, 375162, 396967, 400469
Offset: 1
Examples
a(4) = 24 since pi(16^3) + pi(24^3) = pi(4096) + pi(13824) = 564 + 1633 = 2197 = 13^3.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016.
Programs
-
Mathematica
f[n_]:=PrimePi[n^3] CQ[n_]:=IntegerQ[n^(1/3)] n=0;Do[Do[If[CQ[f[x]+f[y]],n=n+1;Print[n," ",y];Goto[aa]],{x,1,y}];Label[aa];Continue,{y,1,3000}]
-
PARI
lista(nn) = {my(c=0, v=vector(nn)); for(m=1, nn, forprime(p=(m-1)^3+1, m^3, c++); v[m]=c; if(sum(k=1, m, ispower(v[k]+v[m], 3)), print1(m, ", "))); } \\ Jinyuan Wang, Jun 13 2020
Extensions
a(18)-a(25) from Giovanni Resta, Jun 14 2020
a(26)-a(29) from Chai Wah Wu, Apr 05 2021
a(30)-a(32) from Chai Wah Wu, Apr 09 2021
Comments