cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A262698 Positive integers m such that pi(k^3) + pi(m^3) is a cube for some k = 1,...,m, where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

1, 2, 4, 24, 41, 51, 88, 95, 99, 179, 183, 663, 782, 829, 1339, 2054, 2816, 7918, 8474, 13264, 16664, 27415, 39514, 48606, 51145, 187222, 200906, 261980, 353209, 375162, 396967, 400469
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 27 2015

Keywords

Comments

Conjecture: (i) There are infinitely many distinct primes p,q,r such that pi(p^2) + pi(q^2) = r^2.
(ii) The Diophantine equation pi(x^3) + pi(y^3) = z^3 with 0 < x <= y and z >= 0 only has the following 17 solutions: (x,y,z) = (1,1,0), (2,2,2), (3,4,3), (16,24,13), (3,41,19), (37,51,26), (53,88,41), (18,95,41), (45,99,44), (108,179,79), (149,183,87), (8,663,251), (243,782,297), (803,829,385), (100,1339,489), (674,2054,745), (1519,2816,1047).
(iii) The Diophantine equation pi(x^n) + pi(y^n) = z^n with n > 3 and x,y,z > 0 has no solution.
a(26) > 10^5, if it exists. Conjecture (ii) above is false since these further solutions exist: (1339, 7918, 2682), (3360, 8474, 2922), (8443, 13264, 4764), (15590, 16664, 6696), (15883, 27415, 9431), (9719, 39514, 12689), (22265, 48606, 15933), (38606, 51145, 18297). - Giovanni Resta, Jun 14 2020
Further solutions: (79522, 187222, 58554), (65281, 200906, 61833), (222863, 261980, 92917), (226465, 353209, 114585), (41559, 375162, 112168), (244967, 396967, 127399), (291034, 400469, 133443) - Chai Wah Wu, Apr 13 2021

Examples

			a(4) = 24 since pi(16^3) + pi(24^3) = pi(4096) + pi(13824) = 564 + 1633 = 2197 = 13^3.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n^3]
    CQ[n_]:=IntegerQ[n^(1/3)]
    n=0;Do[Do[If[CQ[f[x]+f[y]],n=n+1;Print[n," ",y];Goto[aa]],{x,1,y}];Label[aa];Continue,{y,1,3000}]
  • PARI
    lista(nn) = {my(c=0, v=vector(nn)); for(m=1, nn, forprime(p=(m-1)^3+1, m^3, c++); v[m]=c; if(sum(k=1, m, ispower(v[k]+v[m], 3)), print1(m, ", "))); } \\ Jinyuan Wang, Jun 13 2020

Extensions

a(18)-a(25) from Giovanni Resta, Jun 14 2020
a(26)-a(29) from Chai Wah Wu, Apr 05 2021
a(30)-a(32) from Chai Wah Wu, Apr 09 2021

A262730 Primes p such that p^2 = pi(x^3) + pi(y^3) for some positive integers x and y, where pi(m) denotes the number of primes not exceeding m.

Original entry on oeis.org

2, 3, 23, 83, 199, 331, 487, 1069, 1289, 1697, 2467, 3463, 3617, 3733, 5153, 5449, 6221, 9203, 9811, 9967, 12473, 13883, 14723, 15791, 16001, 18919, 33589, 33827, 46093, 58321, 59051, 59921, 60289, 71249, 84349, 85133, 88211, 124309, 126047, 126359, 127541, 145679, 146807, 153247, 165233
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 28 2015

Keywords

Comments

Conjecture: (i) The sequence has infinitely many terms.
(ii) There are infinitely many primes p such that p^2 = pi(x^3+y^3) for some positive integers x and y.
See also A262731 for a related conjecture.

Examples

			a(1) = 2 since pi(1^3)+pi(2^3) = 0+4 = 2^2 with 2 prime.
a(3) = 23 since pi(9^3)+pi(14^3) = pi(729)+pi(2744) = 129+400 = 529 = 23^2 with 23 prime.
a(20) = 9967 since pi(841^3)+pi(1109^3) = pi(594823321)+pi(1363938029) = 31068537+68272552 = 99341089 = 9967^2 with 9967 prime.
a(38) = 124309 since pi(5773^3)+pi(5779^3) = pi(192399824917)+pi(193000344139) = 7714808769+7737918712 = 15452727481 = 124309^2 with 124309 prime.
a(45) = 165233 since pi(6924^3)+pi(7148^3) = pi(331948857024)+pi(365219225792) = 13025048890+14276895399 = 27301944289 = 165233^2 with 165233 prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n^3]
    T[1]:={0}
    T[n_]:=Union[T[n-1],{f[n]}]
    n=0;Do[Do[If[f[x]>Prime[y]^2,Goto[aa]];If[MemberQ[T[Prime[y]],Prime[y]^2-f[x]],n=n+1;Print[n," ",Prime[y]];Goto[aa]];Continue,{x,1,Prime[y]}];
    Label[aa];Continue,{y,1,15111}]

A262722 Positive integers m such that pi(k^3+m^3) is a cube for some k = 1..m, where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

1, 41, 56, 74, 103, 157, 384, 491, 537, 868, 1490, 1710, 4322, 4523, 4877, 4942, 5147, 5407, 7564, 17576, 67722, 131455, 220641, 438895, 443475, 553878, 571473, 625611
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 28 2015

Keywords

Comments

Conjecture: (i) There are infinitely many distinct primes p,q,r such that pi(p^2+q^2) = r^2.
(ii) The Diophantine equation pi(x^3+y^3) = z^3 with 0 < x <= y and z > 0 only has the following 13 solutions: (x,y,z) = (1,1,1), (5,41,19), (47,56,29), (28,74,33), (2,103,44), (3,103,44), (6,157,65), (235,384,160), (266,491,198), (91,537,206), (359,868,331), (783,1490,565), (1192,1710,677).
(iii) The Diophantine equation pi(x^n+y^n) = z^n with n > 3 and x,y,z > 0 has no solution.
Part (ii) of the conjecture implies that the current sequence only has 12 terms as shown here.
Conjecture (ii) is false as there are more terms beyond 1710. It is likely the sequence has an infinite number of terms. (x,y,z) for 1710 < y <= 7564: (1429, 4322, 1514), (1974, 4523, 1604), (3361, 4877, 1840), (3992, 4942, 1949), (3253, 5147, 1902), (971, 5407, 1859), (935, 7564, 2563). - Chai Wah Wu, Apr 12 2021
Solutions (x,y,z) for 7564 < y <= 67722: (3484, 17576, 5783), (25184, 67722, 21604). - Chai Wah Wu, Apr 17 2021
Solutions (x,y,z) for 67722 < y <= 625611: (61021, 131455, 41715), (93577, 220641, 68507), (394510, 438895, 155930), (3086, 443475, 131933), (338485, 553878, 175133), (239982, 571473, 172855), (610794, 625611, 228409). - Chai Wah Wu, Apr 26 2021

Examples

			a(2) = 41 since pi(5^3+41^3) = pi(125+68921) = pi(69046) = 6859 = 19^3.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[x_,y_]:=PrimePi[x^3+y^3]
    CQ[n_]:=IntegerQ[n^(1/3)]
    n=0;Do[Do[If[CQ[f[x,y]],n=n+1;Print[n," ",y];Goto[aa]],{x,1,y}];Label[aa];Continue,{y,1,1800}]

Extensions

a(13)-a(19) from Chai Wah Wu, Apr 12 2021
a(20)-a(21) from Chai Wah Wu, Apr 17 2021
a(22)-a(28) from Chai Wah Wu, Apr 26 2021
Showing 1-3 of 3 results.