cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262543 Number of rooted asymmetrical polyenoids of type U_n* having n edges.

Original entry on oeis.org

0, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592, 117572, 416024, 1485800, 5348880, 19389690, 70715340, 259289580, 955277400, 3534526380, 13128240840, 48932534040, 182965127280, 686119227300, 2579808294648, 9723892802904, 36734706144304, 139067101832008, 527495903500720
Offset: 1

Views

Author

N. J. A. Sloane, Oct 06 2015

Keywords

Comments

Essentially the same as A068875 and A002420. See those entries for much more information.

Examples

			G.f. = 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 84*x^6 + 264*x^7 + 858*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [0] cat [2*Catalan(n-1): n in [2..40]]; // Vincenzo Librandi, Feb 28 2017
    
  • Maple
    A262543List := proc(m) local A, P, n; A := [0, 2]; P := [2];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A262543List(29); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[If[n==1,0,2 CatalanNumber[n-1]], {n,1,26}] (* Peter Luschny, Feb 27 2017 *)
    Join[{0}, Rest[CoefficientList[Series[2 (1 - Sqrt[1 - 4 x])/(2 x), {x, 0, 30}], x]]] (* Vincenzo Librandi, Feb 28 2017 *)
  • PARI
    a(n)=if(n>1, 2*binomial(2*n-2,n-1)/n, 0) \\ Charles R Greathouse IV, Feb 28 2017

Formula

From Gennady Eremin, Feb 22 2021: (Start)
G.f.: 1 - 2*x - sqrt(1 - 4*x).
G.f.: x*(A(x) - 1), where A(x) is the g.f. of A068875. (End)