cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262568 a(n) = A002703(n) + 2.

Original entry on oeis.org

2, 2, 2, 4, 8, 16, 26, 48, 90, 164, 302, 564, 1058, 1984, 3744, 7084, 13440, 25576, 48770, 93200, 178482, 342394, 657920, 1266204, 2440320, 4709376, 9099506, 17602324, 34087012, 66076416, 128207978, 248983552, 483939978, 941362696, 1832519264, 3569842948
Offset: 3

Views

Author

N. J. A. Sloane, Oct 20 2015

Keywords

Crossrefs

Tables 1 and 2 of the first Rosa-Znám 1965 paper are A053632 and A178666 respectively.

Programs

  • Maple
    A178666 := proc(r,s)
        product( (1+x^(2*i+1)),i=0..floor((s-1)/2)) ;
        expand(%) ;
        coeftayl(%,x=0,r) ;
    end proc:
    kstart := proc(n,m)
        ceil(binomial(n+1,2)/m) ;
    end proc:
    kend := proc(n,m)
        floor(binomial(3*n+1,2)/3/m) ;
    end proc:
    A262568 := proc(n)
        local s,m,Q ,vi,k;
        s := 2*n-1 ;
        m := 2*n+1 ;
        Q := 0 ;
        for k from kstart(n,m) to kend(n,m) do
            vi := m*k-binomial(n+1,2) ;
            Q := Q+A178666(vi,s) ;
        end do:
        Q ;
    end proc: # R. J. Mathar, Oct 21 2015
  • Mathematica
    A178666[r_, s_] := SeriesCoefficient[Product[(1 + x^(2i+1)), {i, 0, Floor[ (s - 1)/2]}], {x, 0, r}];
    kstart [n_, m_] := Ceiling[Binomial[n+1, 2]/m];
    kend[n_, m_] := Floor[Binomial[3n+1, 2]/3/m];
    a[n_] := Module[{s = 2n-1, m = 2n+1, Q=0, vi, k}, For[k = kstart[n, m], k <= kend[n, m], k++, vi = m k - Binomial[n+1, 2]; Q += A178666[vi, s]]; Q];
    a /@ Range[3, 38] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)

Formula

See Maple code! - N. J. A. Sloane, Oct 21 2015

Extensions

More terms from R. J. Mathar, Oct 21 2015
Missing a(16) inserted by Sean A. Irvine, Oct 23 2015