Original entry on oeis.org
13, 134567891011121314151617181920212223242526272829303132333435363738394041
Offset: 1
See
A262300 for more about this problem.
-
Select[DeleteDuplicates[Table[FromDigits[Flatten[IntegerDigits[Complement[Range[n], {2}]]]], {n, 50}]], PrimeQ[#] & ](* Robert Price, Nov 05 2018 *)
A262571
Concatenation of the numbers from 2 to n.
Original entry on oeis.org
2, 23, 234, 2345, 23456, 234567, 2345678, 23456789, 2345678910, 234567891011, 23456789101112, 2345678910111213, 234567891011121314, 23456789101112131415, 2345678910111213141516, 234567891011121314151617, 23456789101112131415161718, 2345678910111213141516171819
Offset: 2
For primes in this sequence see
A089987.
See
A262300 for more about this problem.
-
[Seqint(Reverse(&cat[Reverse(Intseq(k)): k in [2..n]])): n in [2..20]]; // Vincenzo Librandi, Oct 29 2018
-
Table[FromDigits[Flatten[IntegerDigits[Range[2, n]]]], {n, 2, 19}] (* Robert Price, Oct 28 2018 *)
-
def a(n): return int("".join(map(str, range(2, n+1))))
print([a(n) for n in range(2, 20)]) # Michael S. Branicky, Feb 23 2021
A262555
Numbers n such that the concatenation of the decimal numbers 1 through n, but omitting 2, is a prime.
Original entry on oeis.org
3, 41, 103, 1713, 2769
Offset: 1
The first two terms correspond to the primes 13 and 134567891011121314151617181920212223242526272829303132333435363738394041 (see A262298).
a(3) corresponds to a prime ending in 103, with 200 digits, a(4) to a probable prime ending in 1713, with 5744 digits, and a(5) to a probable prime ending in 2769, with 9968 digits. These three terms were found by _David Broadhurst_ on Oct 09 2015.
Showing 1-3 of 3 results.
Comments