A262598 Small positive integer solutions of the simultaneous equations y = ax + b and y^2 = ax^3 + b.
1, 2, 1, 3, 1, 6, 9, 15, 2, 5, 6, 16, 2, 6, 9, 21, 2, 10, 25, 45, 2, 57, 495, 609, 2, 637, 21463, 22737, 3, 10, 25, 55, 3, 14, 49, 91, 4, 14, 49, 105, 4, 18, 81, 153, 5, 13, 40, 105, 5, 18, 81, 171, 5, 22, 121, 231, 5, 574, 27881, 30751, 6, 22, 121, 253, 6, 26, 169, 325
Offset: 1
Examples
The sequence is the result of concatenating the rows in the table of solutions for a, x, b and y. The table starts: . a x b y . 1 2 1 3 . 1 6 9 15 . 2 5 6 16 . 2 6 9 21 . 2 10 25 45 . 2 57 495 609 . 2 637 21463 22737 . 3 10 25 55 . 3 14 49 91 . 4 14 49 105 . 4 18 81 153 . 5 13 40 105 . 5 18 81 171 . 5 22 121 231 . 5 574 27881 30751 . 6 22 121 253 . 6 26 169 325 For a=7 the three solution quadruplets are (7,26,169,351), (7,30,225,435) and (7,1340,120400,129780).
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..896
Programs
-
Maple
for a to 100 do for x to 2000000 do y := ceil(sqrt(a*x^3)); b := y^2-a*x^3; if b > 0 and y = a*x+b then printf("%10d %10d %10d %10d\n", a, x, b, y); end if; end do; end do;
Comments