cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262666 Irregular table read by rows: T(n,k) is the number of binary bisymmetric n X n matrices with exactly k 1's; n>=0, 0<=k<=n^2.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 4, 0, 8, 0, 12, 0, 14, 0, 12, 0, 8, 0, 4, 0, 1, 1, 1, 4, 4, 10, 10, 20, 20, 31, 31, 40, 40, 44, 44, 40, 40, 31, 31, 20, 20, 10, 10, 4, 4, 1, 1, 1, 0, 6, 0, 21, 0, 56, 0, 120, 0, 216, 0, 336, 0, 456, 0
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 26 2015

Keywords

Comments

T(n,k) = 0 if n is even and k is odd.
T(n,k) = T(n,k+1) if n is odd and k is even.

Examples

			Irregular table begins:
n\k 0   1   2   3   4   5   6   7   8   9   ...
0:  1
1:  1   1
2:  1   0   2   0   1
3:  1   1   2   2   2   2   2   2   1   1
4:  1   0   4   0   8   0  12   0  14   0   ...
5:  1   1   4   4  10  10  20  20  31  31   ...
...
		

Crossrefs

Row sums give A060656(n+1).
Columns k=0-3 give: A000012, A000035, A052928, A237420(n+1).

Programs

  • Maple
    T:= n-> seq(coeff((t->(1+x^2)^(n-t)*(1+x)^t*(1+x^4)^
          (((n-2)*n+t)/4))(irem(n, 2)), x, i), i=0..n^2):
    seq(T(n), n=0..6);  # Alois P. Heinz, Sep 27 2015

Formula

G.f. for row n: (1+x)^t*(1+x^2)^(n-t)*(1+x^4)^(((n-2)*n+t)/4) where t = n mod 2. - Alois P. Heinz, Sep 27 2015

Extensions

More terms from Alois P. Heinz, Sep 27 2015