A262666 Irregular table read by rows: T(n,k) is the number of binary bisymmetric n X n matrices with exactly k 1's; n>=0, 0<=k<=n^2.
1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 4, 0, 8, 0, 12, 0, 14, 0, 12, 0, 8, 0, 4, 0, 1, 1, 1, 4, 4, 10, 10, 20, 20, 31, 31, 40, 40, 44, 44, 40, 40, 31, 31, 20, 20, 10, 10, 4, 4, 1, 1, 1, 0, 6, 0, 21, 0, 56, 0, 120, 0, 216, 0, 336, 0, 456, 0
Offset: 0
Examples
Irregular table begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 1 1 2: 1 0 2 0 1 3: 1 1 2 2 2 2 2 2 1 1 4: 1 0 4 0 8 0 12 0 14 0 ... 5: 1 1 4 4 10 10 20 20 31 31 ... ...
Links
- Alois P. Heinz, Rows n = 0..32, flattened
- Kival Ngaokrajang, Illustration of initial terms
- Dennis P. Walsh, Notes on binary bisymmetric matrices
- Wikipedia, Bisymmetric Matrix
Crossrefs
Programs
-
Maple
T:= n-> seq(coeff((t->(1+x^2)^(n-t)*(1+x)^t*(1+x^4)^ (((n-2)*n+t)/4))(irem(n, 2)), x, i), i=0..n^2): seq(T(n), n=0..6); # Alois P. Heinz, Sep 27 2015
Formula
G.f. for row n: (1+x)^t*(1+x^2)^(n-t)*(1+x^4)^(((n-2)*n+t)/4) where t = n mod 2. - Alois P. Heinz, Sep 27 2015
Extensions
More terms from Alois P. Heinz, Sep 27 2015
Comments