cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262671 Number of pointed multiset partitions of normal pointed multisets of weight n.

Original entry on oeis.org

1, 6, 42, 335, 2956, 28468, 296540
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2015

Keywords

Comments

A pointed multiset k[1...k...n] with point k is normal if its entries [1...k...n] span an initial interval of positive integers. Pointed multiset partitions are triangles (or compositions) in the multiorder of pointed multisets.

Examples

			The a(2) = 6 pointed multiset partitions are:
1[1[11]],1[1[1]1[1]],
1[1[12]],1[1[1]2[2]],
2[2[12]],2[1[1]2[2]].
The a(3) = 42 pointed multiset partitions are:
1[1[111]],1[1[1]1[11]],1[1[11]1[1]],1[1[1]1[1]1[1]],
1[1[122]],1[1[1]2[22]],1[1[12]2[2]],1[1[1]2[2]2[2]],
2[2[122]],2[1[1]2[22]],2[1[12]2[2]],2[2[2]2[12]],2[2[12]2[2]],2[1[1]2[2]2[2]],
1[1[112]],1[1[1]1[12]],1[1[1]2[12]],1[1[11]2[2]],1[1[12]1[1]],1[1[1]1[1]2[2]],
2[2[112]],2[1[1]2[12]],2[1[11]2[2]],2[1[1]1[1]2[2]],
1[1[123]],1[1[1]2[23]],1[1[1]3[23]],1[1[12]3[3]],1[1[13]2[2]],1[1[1]2[2]3[3]],
2[2[123]],2[1[1]2[23]],2[1[13]2[2]],2[2[2]3[13]],2[2[12]3[3]],2[1[1]2[2]3[3]],
3[3[123]],3[1[1]3[23]],3[1[12]3[3]],3[2[2]3[13]],3[2[12]3[3]],3[1[1]2[2]3[3]].
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_List, rerules_List] :=
    Union[Flatten[
       FixedPointList[
        Function[preforms,
         Union[Flatten[ReplaceList[#, rerules] & /@ preforms, 1]]],
        forms], 1]]
    pointedPartitions[JIX[r_, b_List?OrderedQ]] /; MemberQ[b, r] :=
      Cases[ReplaceListRepeated[{Z[Y[JIX[r, {r}]],
          Y @@ DeleteCases[b, r, 1, 1]]}, {Z[Y[sof___, JIX[w_, t_]],
            Y[for___, x_, aft___]] /; OrderedQ[{w, x}] :>
          Z[Y[sof, JIX[w, t], JIX[x, {x}]], Y[for, aft]],
         Z[Y[JIX[w_, t_], soa___], Y[for___, x_, aft___]] /;
           OrderedQ[{x, w}] :>
          Z[Y[JIX[x, {x}], JIX[w, t], soa], Y[for, aft]],
         Z[Y[sof___, JIX[w_, {tof__}]], Y[for___, x_, aft___]] :>
          Z[Y[sof, JIX[w, Sort[{tof, x}]]], Y[for, aft]],
         Z[Y[JIX[w_, {tof__}], soa___], Y[for___, x_, aft___]] :>
          Z[Y[JIX[w, Sort[{tof, x}]], soa], Y[for, aft]]}],
       Z[Y[pts__], Y[]] :> JIX[r, {pts}]];
    allnormpms[n_Integer] :=
      Join @@ Function[s,
         JIX[#, Array[Count[s, y_ /; y <= #] + 1 &, n]] & /@
          Range[Length[s] + 1]] /@ Subsets[Range[n - 1] + 1];
    Join @@ pointedPartitions /@ allnormpms[3] /.
    JIX -> Apply(* to construct the example *)
    Array[Plus @@ (Length[pointedPartitions[#]] & /@
         allnormpms[#]) &, 7](* to compute the sequence *)