cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262696 a(n)=0 if n is in A259934, otherwise number of terminal nodes (including n itself if it is a leaf) in that finite subtree whose root is n and whose edge-relation is defined by A049820(child) = parent.

Original entry on oeis.org

0, 2, 0, 1, 1, 1, 0, 1, 1, 13, 1, 13, 0, 1, 1, 11, 1, 11, 0, 1, 1, 10, 0, 10, 1, 1, 1, 10, 1, 9, 0, 8, 1, 1, 0, 8, 1, 1, 6, 7, 1, 1, 0, 1, 1, 6, 0, 6, 5, 1, 1, 6, 1, 5, 0, 1, 1, 5, 0, 3, 4, 3, 0, 1, 1, 3, 1, 1, 1, 2, 0, 1, 4, 1, 1, 1, 7, 1, 0, 1, 1, 7, 1, 6, 4, 1, 1, 6, 1, 1, 0, 5, 1, 1, 0, 4, 4, 4, 1, 1, 1, 1, 0, 1, 3, 4, 0, 4, 1, 1, 1, 3, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 4, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 04 2015

Keywords

Examples

			For n=1, its transitive closure (as defined by edge-relation A049820(child) = parent) is the union of {1} itself together with all its descendants: {1, 3, 4, 5, 7, 8}. We see that there are no other nodes in a subtree whose root is 1, because A049820(3) = 3 - d(3) = 1, A049820(4) = 1, A049820(5) = 3, A049820(7) = 5, A049820(8) = 4 and of these only 7 and 8 are terms of A045765. Thus a(1) = 2.
For n=9, its transitive closure is {9, 11, 13, 15, 16, 17, 19, 21, 23, 24, 27, 29, 31, 33, 35, 36, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 75, 77, 79}, of which only thirteen members: {13, 19, 24, 33, 36, 37, 43, 55, 63, 64, 67, 75, 79} are leaves (in A045765), thus a(9) = 13.
		

Crossrefs

Formula

If A262693(n) = 1 [when n is in A259934],
then a(n) = 0,
otherwise, if A060990(n) = 0 [when n is one of the leaves, A045765],
then a(n) = 1,
otherwise:
a(n) = Sum_{k = A082284(n) .. A262686(n)} [A049820(k) = n] * a(k).
(In the last clause [ ] stands for Iverson bracket, giving as its result 1 only when A049820(k) = n, and 0 otherwise).
Other identities:
For any n in A262511 but not in A259934, a(n) = a(A082284(n)).