cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262698 Positive integers m such that pi(k^3) + pi(m^3) is a cube for some k = 1,...,m, where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

1, 2, 4, 24, 41, 51, 88, 95, 99, 179, 183, 663, 782, 829, 1339, 2054, 2816, 7918, 8474, 13264, 16664, 27415, 39514, 48606, 51145, 187222, 200906, 261980, 353209, 375162, 396967, 400469
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 27 2015

Keywords

Comments

Conjecture: (i) There are infinitely many distinct primes p,q,r such that pi(p^2) + pi(q^2) = r^2.
(ii) The Diophantine equation pi(x^3) + pi(y^3) = z^3 with 0 < x <= y and z >= 0 only has the following 17 solutions: (x,y,z) = (1,1,0), (2,2,2), (3,4,3), (16,24,13), (3,41,19), (37,51,26), (53,88,41), (18,95,41), (45,99,44), (108,179,79), (149,183,87), (8,663,251), (243,782,297), (803,829,385), (100,1339,489), (674,2054,745), (1519,2816,1047).
(iii) The Diophantine equation pi(x^n) + pi(y^n) = z^n with n > 3 and x,y,z > 0 has no solution.
a(26) > 10^5, if it exists. Conjecture (ii) above is false since these further solutions exist: (1339, 7918, 2682), (3360, 8474, 2922), (8443, 13264, 4764), (15590, 16664, 6696), (15883, 27415, 9431), (9719, 39514, 12689), (22265, 48606, 15933), (38606, 51145, 18297). - Giovanni Resta, Jun 14 2020
Further solutions: (79522, 187222, 58554), (65281, 200906, 61833), (222863, 261980, 92917), (226465, 353209, 114585), (41559, 375162, 112168), (244967, 396967, 127399), (291034, 400469, 133443) - Chai Wah Wu, Apr 13 2021

Examples

			a(4) = 24 since pi(16^3) + pi(24^3) = pi(4096) + pi(13824) = 564 + 1633 = 2197 = 13^3.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n^3]
    CQ[n_]:=IntegerQ[n^(1/3)]
    n=0;Do[Do[If[CQ[f[x]+f[y]],n=n+1;Print[n," ",y];Goto[aa]],{x,1,y}];Label[aa];Continue,{y,1,3000}]
  • PARI
    lista(nn) = {my(c=0, v=vector(nn)); for(m=1, nn, forprime(p=(m-1)^3+1, m^3, c++); v[m]=c; if(sum(k=1, m, ispower(v[k]+v[m], 3)), print1(m, ", "))); } \\ Jinyuan Wang, Jun 13 2020

Extensions

a(18)-a(25) from Giovanni Resta, Jun 14 2020
a(26)-a(29) from Chai Wah Wu, Apr 05 2021
a(30)-a(32) from Chai Wah Wu, Apr 09 2021