cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262700 Primes p such that pi(p^2)*pi(q^2) is a square for some prime q < p, where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

5, 19, 31, 151, 691, 1181, 1489, 1511, 1601, 2579, 3037, 7297, 9661, 10993, 11699, 20407, 25657, 33937, 65099, 96419, 102911, 133157, 251789, 411841, 417271, 670729, 808211, 1179907, 1671277
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 27 2015

Keywords

Comments

Conjecture: (i) The sequence has infinitely many terms.
(ii) The Diophantine equation pi(x^n)*pi(y^n) = z^n with n > 2 and x,y,z > 0 has no solution.

Examples

			a(1) = 5 since pi(5^2)*pi(3^2) = 9*4 = 6^2 with 5 and 3 both prime.
a(2) = 19 since pi(19^2)*pi(2^2) = 72*2 = 12^2 with 19 and 2 both prime.
a(21) = 102911 since pi(102911^2)*pi(919^2) = pi(10590673921)*pi(844561) = 480670430*67230 = 32315473008900 = 5684670^2 with 102911 and 919 both prime.
a(22) = 133157 since pi(133157^2)*pi(19^2) = pi(17730786649)*pi(361) = 786299168*72 = 56613540096 = 237936^2 with 133157 and 19 both prime.
a(23) = 251789 since pi(251789^2)*pi(10513^2) = pi(63397700521)*pi(110523169) = 2660789341*6331444 = 16846638708338404 = 129794602^2 with 251789 and 10513 both prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[Prime[n]^2]
    SQ[n_]:=IntegerQ[Sqrt[n]]
    n=0;Do[Do[If[SQ[f[k]*f[m]],n=n+1;Print[n, " ", Prime[m]];Goto[aa]],{k,1,m-1}];Label[aa];Continue,{m,2,22200}]

Extensions

a(24)-a(29) from Chai Wah Wu, Aug 21 2019

A262722 Positive integers m such that pi(k^3+m^3) is a cube for some k = 1..m, where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

1, 41, 56, 74, 103, 157, 384, 491, 537, 868, 1490, 1710, 4322, 4523, 4877, 4942, 5147, 5407, 7564, 17576, 67722, 131455, 220641, 438895, 443475, 553878, 571473, 625611
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 28 2015

Keywords

Comments

Conjecture: (i) There are infinitely many distinct primes p,q,r such that pi(p^2+q^2) = r^2.
(ii) The Diophantine equation pi(x^3+y^3) = z^3 with 0 < x <= y and z > 0 only has the following 13 solutions: (x,y,z) = (1,1,1), (5,41,19), (47,56,29), (28,74,33), (2,103,44), (3,103,44), (6,157,65), (235,384,160), (266,491,198), (91,537,206), (359,868,331), (783,1490,565), (1192,1710,677).
(iii) The Diophantine equation pi(x^n+y^n) = z^n with n > 3 and x,y,z > 0 has no solution.
Part (ii) of the conjecture implies that the current sequence only has 12 terms as shown here.
Conjecture (ii) is false as there are more terms beyond 1710. It is likely the sequence has an infinite number of terms. (x,y,z) for 1710 < y <= 7564: (1429, 4322, 1514), (1974, 4523, 1604), (3361, 4877, 1840), (3992, 4942, 1949), (3253, 5147, 1902), (971, 5407, 1859), (935, 7564, 2563). - Chai Wah Wu, Apr 12 2021
Solutions (x,y,z) for 7564 < y <= 67722: (3484, 17576, 5783), (25184, 67722, 21604). - Chai Wah Wu, Apr 17 2021
Solutions (x,y,z) for 67722 < y <= 625611: (61021, 131455, 41715), (93577, 220641, 68507), (394510, 438895, 155930), (3086, 443475, 131933), (338485, 553878, 175133), (239982, 571473, 172855), (610794, 625611, 228409). - Chai Wah Wu, Apr 26 2021

Examples

			a(2) = 41 since pi(5^3+41^3) = pi(125+68921) = pi(69046) = 6859 = 19^3.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[x_,y_]:=PrimePi[x^3+y^3]
    CQ[n_]:=IntegerQ[n^(1/3)]
    n=0;Do[Do[If[CQ[f[x,y]],n=n+1;Print[n," ",y];Goto[aa]],{x,1,y}];Label[aa];Continue,{y,1,1800}]

Extensions

a(13)-a(19) from Chai Wah Wu, Apr 12 2021
a(20)-a(21) from Chai Wah Wu, Apr 17 2021
a(22)-a(28) from Chai Wah Wu, Apr 26 2021
Showing 1-2 of 2 results.