A262722 Positive integers m such that pi(k^3+m^3) is a cube for some k = 1..m, where pi(x) denotes the number of primes not exceeding x.
1, 41, 56, 74, 103, 157, 384, 491, 537, 868, 1490, 1710, 4322, 4523, 4877, 4942, 5147, 5407, 7564, 17576, 67722, 131455, 220641, 438895, 443475, 553878, 571473, 625611
Offset: 1
Examples
a(2) = 41 since pi(5^3+41^3) = pi(125+68921) = pi(69046) = 6859 = 19^3.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Crossrefs
Programs
-
Mathematica
f[x_,y_]:=PrimePi[x^3+y^3] CQ[n_]:=IntegerQ[n^(1/3)] n=0;Do[Do[If[CQ[f[x,y]],n=n+1;Print[n," ",y];Goto[aa]],{x,1,y}];Label[aa];Continue,{y,1,1800}]
Extensions
a(13)-a(19) from Chai Wah Wu, Apr 12 2021
a(20)-a(21) from Chai Wah Wu, Apr 17 2021
a(22)-a(28) from Chai Wah Wu, Apr 26 2021
Comments