A262743 Predestined numbers: every n number is generated by at least one pair of products, such as n = a*b = c*d, and the multiset of the digits of a and b coincides with the multiset of the digits of c and d.
64, 95, 130, 242, 325, 326, 392, 396, 435, 504, 544, 552, 572, 585, 632, 644, 664, 693, 740, 748, 756, 762, 770, 784, 806, 868, 952, 968, 973, 986, 990, 995, 1008
Offset: 1
Examples
64 = 1*64 = 4*16; 95 = 1*95 = 5*19; 130 = 2*65 = 5*26; 242 = 2*121 = 11*22, etc.
References
- Francesco Di Matteo, Sequenze ludiche, Game Edizioni (2015), pages 28-37.
Links
- Francesco Di Matteo, Table of n, a(n) for n = 1..2815
- F. Di Matteo and A. Marchini, All the first 2815 terms calculated.
Programs
-
Mathematica
good[w_] := Block[{L = {}}, Do[If[Length[Select[Join[w[[i]], w[[j]]], Mod[#, 10] == 0 &]] <= 1, AppendTo[L, {w[[i]], w[[j]]}]], {i, Length@w}, {j, i - 1}]; L]; prQ[n_] := Block[{t, d = Select[Divisors@n, #^2 <= n &]}, t = (Last /@ #) & /@ Select[SplitBy[ Sort@ Table[{ Sort@ Join[ IntegerDigits@ e, IntegerDigits [n/e]], {e, n/e}}, {e, d}], First], Length[#] > 1 &]; g = Select[good /@ t, # != {} &]; g != {}]; (* then *) Select[Range[1000], prQ] (* or *) Do[If[prQ@ n, Print[n," ", Flatten[g, 1]]], {n, 10^5}] (* Giovanni Resta, Oct 07 2015 *)
Comments