A262873
Predestined numbers A262743 in which every term is generated by at least one pair of products where all (and only those) first product's factor's digits are, in reverse order, the same as those of the second two factors.
Original entry on oeis.org
504, 756, 806, 868, 1008, 1148, 1176, 1209, 1472, 1475, 1512, 1638, 1708, 2016, 2184, 2208, 2418, 2548, 2730, 2772, 2924, 3024, 3388, 4416
Offset: 1
504 = 12*42 = 24*21;
756 = 12*63 = 36*21;
806 = 13*62 = 26*31;
868 = 4*217 = 7*124;
1008 = 12*84 = 48*21;
1148 = 14*82 = 28*41;
1176 = 4*294 = 49*24, etc.
- Francesco Di Matteo, Sequenze ludiche, Game Edizioni (2015), page 34.
Cf.
A228164 (contains only symmetrical digits' factors)
A262989
Predestined numbers A262743 generated from at least a pair of products in which, for each product, all digits 0 through 9 are used, and each digit appears exactly once.
Original entry on oeis.org
248665082, 248695370, 249063875, 253674980, 256175640, 257930648, 257938064, 260577504, 260817480, 263987504, 264713960, 267766632, 267953048, 269037548, 269045192, 269174192, 269307584, 269735900, 269937500
Offset: 1
248665082 = 106*2345897 and 2378*104569;
248695370 = 10*24869537 and 1045*237986, 1045*237986 and 1*248695370;
249063875 = 2375*104869 and 1*249063875;
...
8270423667 = 87*95062341 and 957*8642031;
8271362484 = 957*8643012 and 8526*970134;
8282993378 = 853*9710426 and 8503*974126.
- Francesco Di Matteo, Sequenze ludiche, Game Edizioni (2015), page 37.
-
good[w_]:=Block[{L={}}, Do[If[ Length[ Select[ Join[w[[i]], w[[j]]], Mod[#,10]==0&]]<=1,AppendTo[L, {w[[i]], w[[j]]}]], {i, Length@w}, {j, i-1}]; L]; f[w_]:=Select[ Table[ FromDigits/@ {Take[w, i], Take[w, i-10]}, {i, 5}], #[[1]] <= #[[2]] && IntegerLength[#[[1]]] + IntegerLength[ #[[2]]] == 10&]; p = Select[ Permutations@ Range[0, 9], First[#] > 0&]; t = SplitBy[ Sort[{ Times@@ #, #} &/@ Flatten[ f/@ p, 1]], First]; u = Select[ (Last/@ #) &/@ Select[t, Length[#] > 1&], good[#] != {} &]; seq = Union[ Times @@@ Flatten[u, 1]]; Length@ seq (* Giovanni Resta, Oct 07 2015 *)
A228164
Numbers n having at least two distinct symmetrical pairs of divisors (a, b) and (b', a') such that n = a*b = b'*a' with a' = reverse(a) and b' = reverse(b).
Original entry on oeis.org
504, 756, 806, 1008, 1148, 1209, 1472, 1512, 2016, 2208, 2418, 2772, 2924, 3024, 4416, 4433, 5544, 6314, 8096, 8316, 8415, 8866, 10736, 11088, 12628, 13277, 13299, 14300, 16038, 16082, 16192, 16632, 17732, 20405, 21384, 22176, 24288, 24948, 25452, 26598, 26730
Offset: 1
504 is in the sequence because the two pairs of divisors (42, 12) and (21, 24) have the property 42*12 = 21*24 = 504 with 42 = reverse(24) and 12 = reverse(21).
50904 is in the sequence because we obtain two double pairs of divisors: (12, 4242) and (2424, 21), (42, 1212) and (2121, 24);
101808 is in the sequence because we obtain three double pairs of divisors: (12, 8484) and (4848, 21), (24, 4242) and (2424, 42), (48, 2121) and (1212, 84).
From _Michael De Vlieger_, Sep 15 2017: (Start)
First positions of numbers k of symmetrical pairs that appear for a(n) <= 10^7.
k n a(n)
----------------
2 1 504
3 4 1008
4 17 5544
6 98 101808
8 274 559944
(End)
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, 2nd Ed. (1997), p. 142.
-
with(numtheory):for n from 2 to 50000 do:x:=divisors(n):n1:=nops(x):ii:=0:for a from 2 to n1-1 while(ii=0) do:m:=n/x[a]:m1:=convert(m,base,10):nn1:=nops(m1): m2:=convert(x[a],base,10):nn2:=nops(m2): s1:=sum('m1[nn1-i+1]*10^(i-1)', 'i'=1..nn1): s2:=sum('m2[nn2-i+1]*10^(i-1)', 'i'=1..nn2):for b from a+1 to n1-1 while(ii=0) do:q:=n/x[b]:if s1=q and s2=x[b] and m<>x[b] then ii:=1:printf(`%d, `,n):else fi:od:od:od:
-
Select[Range[10^7], Function[n, Count[Rest@ Select[Divisors@ n, # <= Sqrt@ n &], ?(And[IntegerReverse@ # != #, IntegerReverse@ # IntegerReverse[n/#] == n] &)] > 1]] (* _Michael De Vlieger, Oct 09 2015, updated Sep 15 2017 *)
A245386
Numbers in A245385 where P, Q, R, and S are all distinct.
Original entry on oeis.org
164, 195, 265, 498, 1664, 1995, 2665, 4847, 4998, 6545, 7424, 16664, 19995, 21775, 24996, 26665, 43243, 49998, 86486, 148480, 166664, 175150, 199995, 217775, 249996, 266665, 368180, 484847, 499998, 654545, 742424, 1001001, 1081075, 1216216, 1249992, 1297290, 1451850, 1471468, 1481477
Offset: 1
4*84847 = 48484*7 = 339388. Thus 484847 is a member of this sequence.
-
for n in range(1,10**7):
s = str(n)
count = 0
for i in range(1,len(s)):
if i != len(s) - i:
if int(s[:i]) != int(s[len(s)-i:]):
num = int(s[:i])*int(s[i:])
if num != 0:
if num == int(s[:len(s)-i])*int(s[len(s)-i:]):
count += 1
break
if count > 0:
print(n,end=', ')
Showing 1-4 of 4 results.
Comments