A262743
Predestined numbers: every n number is generated by at least one pair of products, such as n = a*b = c*d, and the multiset of the digits of a and b coincides with the multiset of the digits of c and d.
Original entry on oeis.org
64, 95, 130, 242, 325, 326, 392, 396, 435, 504, 544, 552, 572, 585, 632, 644, 664, 693, 740, 748, 756, 762, 770, 784, 806, 868, 952, 968, 973, 986, 990, 995, 1008
Offset: 1
64 = 1*64 = 4*16;
95 = 1*95 = 5*19;
130 = 2*65 = 5*26;
242 = 2*121 = 11*22, etc.
- Francesco Di Matteo, Sequenze ludiche, Game Edizioni (2015), pages 28-37.
-
good[w_] := Block[{L = {}}, Do[If[Length[Select[Join[w[[i]], w[[j]]], Mod[#, 10] == 0 &]] <= 1, AppendTo[L, {w[[i]], w[[j]]}]], {i, Length@w}, {j, i - 1}]; L]; prQ[n_] := Block[{t, d = Select[Divisors@n, #^2 <= n &]}, t = (Last /@ #) & /@ Select[SplitBy[ Sort@ Table[{ Sort@ Join[ IntegerDigits@ e, IntegerDigits [n/e]], {e, n/e}}, {e, d}], First], Length[#] > 1 &]; g = Select[good /@ t, # != {} &]; g != {}]; (* then *) Select[Range[1000], prQ] (* or *) Do[If[prQ@ n, Print[n," ", Flatten[g, 1]]], {n, 10^5}] (* Giovanni Resta, Oct 07 2015 *)
A228164
Numbers n having at least two distinct symmetrical pairs of divisors (a, b) and (b', a') such that n = a*b = b'*a' with a' = reverse(a) and b' = reverse(b).
Original entry on oeis.org
504, 756, 806, 1008, 1148, 1209, 1472, 1512, 2016, 2208, 2418, 2772, 2924, 3024, 4416, 4433, 5544, 6314, 8096, 8316, 8415, 8866, 10736, 11088, 12628, 13277, 13299, 14300, 16038, 16082, 16192, 16632, 17732, 20405, 21384, 22176, 24288, 24948, 25452, 26598, 26730
Offset: 1
504 is in the sequence because the two pairs of divisors (42, 12) and (21, 24) have the property 42*12 = 21*24 = 504 with 42 = reverse(24) and 12 = reverse(21).
50904 is in the sequence because we obtain two double pairs of divisors: (12, 4242) and (2424, 21), (42, 1212) and (2121, 24);
101808 is in the sequence because we obtain three double pairs of divisors: (12, 8484) and (4848, 21), (24, 4242) and (2424, 42), (48, 2121) and (1212, 84).
From _Michael De Vlieger_, Sep 15 2017: (Start)
First positions of numbers k of symmetrical pairs that appear for a(n) <= 10^7.
k n a(n)
----------------
2 1 504
3 4 1008
4 17 5544
6 98 101808
8 274 559944
(End)
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, 2nd Ed. (1997), p. 142.
-
with(numtheory):for n from 2 to 50000 do:x:=divisors(n):n1:=nops(x):ii:=0:for a from 2 to n1-1 while(ii=0) do:m:=n/x[a]:m1:=convert(m,base,10):nn1:=nops(m1): m2:=convert(x[a],base,10):nn2:=nops(m2): s1:=sum('m1[nn1-i+1]*10^(i-1)', 'i'=1..nn1): s2:=sum('m2[nn2-i+1]*10^(i-1)', 'i'=1..nn2):for b from a+1 to n1-1 while(ii=0) do:q:=n/x[b]:if s1=q and s2=x[b] and m<>x[b] then ii:=1:printf(`%d, `,n):else fi:od:od:od:
-
Select[Range[10^7], Function[n, Count[Rest@ Select[Divisors@ n, # <= Sqrt@ n &], ?(And[IntegerReverse@ # != #, IntegerReverse@ # IntegerReverse[n/#] == n] &)] > 1]] (* _Michael De Vlieger, Oct 09 2015, updated Sep 15 2017 *)
Showing 1-2 of 2 results.
Comments