cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262803 Expansion of Product_{k>=1} (1 + x^k) / (1 - x^k)^k.

Original entry on oeis.org

1, 2, 5, 12, 26, 54, 110, 214, 409, 764, 1400, 2520, 4475, 7828, 13532, 23124, 39102, 65472, 108658, 178786, 291883, 472984, 761119, 1216696, 1932898, 3052462, 4793464, 7487122, 11634771, 17991760, 27692230, 42431778, 64737414, 98360742, 148853817, 224405254
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 02 2015

Keywords

Comments

Convolution of A000219 and A000009.

Examples

			G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 26*x^4 + 54*x^5 + 110*x^6 + 214*x^7 + 409*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^-(k%2 + k), 1 + x * O(x^n)), n))}; /* Michael Somos, Oct 02 2015 */

Formula

a(n) ~ exp(1/12 - Pi^4/(1728*zeta(3)) + Pi^2 * n^(1/3)/(3*2^(7/3)*zeta(3)^(1/3)) + 3*zeta(3)^(1/3) * n^(2/3)/2^(2/3)) * zeta(3)^(7/36) / (A * sqrt(3*Pi) * 2^(29/36) * n^(25/36)), where zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
Euler transform of [ 2, 2, 4, 4, 6, 6, ...]. - Michael Somos, Oct 02 2015
G.f.: Product_{k>0} (1 - x^k)^-(k + (k mod 2)). - Michael Somos, Oct 02 2015
Convolution square of A003293. - Michael Somos, Oct 02 2015