cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262824 Number of ordered ways to write n as w^2 + x^3 + 2*y^3 + 3*z^3, where w, x, y and z are nonnegative integers.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 3, 3, 2, 3, 3, 3, 4, 2, 3, 2, 2, 5, 2, 4, 5, 3, 2, 1, 4, 5, 5, 6, 8, 5, 4, 5, 3, 7, 3, 4, 8, 1, 4, 3, 4, 7, 4, 5, 4, 3, 3, 3, 3, 6, 5, 3, 9, 3, 4, 7, 3, 7, 3, 5, 4, 2, 6, 5, 4, 6, 8, 7, 8, 5, 5, 5, 1, 6, 4, 3, 7, 2, 5, 5, 5, 8, 8, 10, 9, 6, 3, 7, 6, 8, 9, 9, 8, 5, 6, 4, 3, 6, 7, 4, 7
Offset: 0

Views

Author

Zhi-Wei Sun, Oct 03 2015

Keywords

Comments

Conjecture: (i) For any m = 3, 4, 5, 6 and n >= 0, there are nonnegative integers w, x, y, z such that n = w^2 + x^3 + 2*y^3 + m*z^3.
(ii) For P(w,x,y,z) = w^2 + x^3 + 2*y^3 + z^4, w^2 + x^3 + 2*y^3 + 3*z^4, w^2 + x^3 + 2*y^3 + 6*z^4, 2*w^2 + x^3 + 4*y^3 + z^4, we have {P(w,x,y,z): w,x,y,z = 0,1,2,...} ={0,1,2,...}.
Conjectures (i) and (ii) verified up to 10^11. - Mauro Fiorentini, Jul 22 2023
See also A262827 and A262857 for similar conjectures.

Examples

			a(0) = 1 since 0 = 0^2 + 0^3 + 2*0^3 + 3*0^3.
a(8) = 2 since 8 = 2^2 + 1^3 + 2*0^3 + 3*1^3 = 0^2 + 2^3 + 2*0^3 + 3*0^3.
a(23) = 1 since 23 = 2^2 + 0^3 + 2*2^3 + 3*1^3.
a(37) = 1 since 37 = 6^2 + 1^3 + 2*0^3 + 3*0^3.
a(72) = 1 since 72 = 8^2 + 2^3 + 2*0^3 + 3*0^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^3-2y^3-3z^3],r=r+1],{x,0,n^(1/3)},{y,0,((n-x^3)/2)^(1/3)},{z,0,((n-x^3-2y^3)/3)^(1/3)}];Print[n," ",r];Continue,{n,1,100}]