A262827 Number of ordered ways to write n as w^2 + x^3 + y^4 + 2*z^4, where w, x, y and z are nonnegative integers.
1, 3, 4, 4, 4, 3, 2, 2, 2, 3, 4, 4, 4, 2, 1, 1, 2, 5, 5, 5, 4, 1, 1, 1, 2, 4, 5, 6, 6, 3, 3, 2, 3, 7, 6, 4, 4, 5, 4, 3, 3, 4, 5, 4, 5, 4, 3, 2, 2, 8, 5, 3, 6, 4, 3, 2, 2, 5, 4, 4, 5, 2, 1, 2, 5, 9, 7, 5, 7, 4, 3, 1, 2, 4, 3, 5, 5, 2, 1, 3, 3, 8, 9, 8, 8, 5, 2, 1, 2, 5, 6, 7, 7, 3, 2, 2, 4, 7, 7, 2, 7
Offset: 0
Keywords
Examples
a(14) = 1 since 14 = 2^2 + 2^3 + 0^4 + 2*1^4. a(87) = 1 since 87 = 2^2 + 0^3 + 3^4 + 2*1^4. a(216) = 1 since 216 = 0^2 + 6^3 + 0^4 + 2*0^4. a(405) = 1 since 405 = 18^2 + 0^3 + 3^4 + 2*0^4. a(1248) = 1 since 1248 = 31^2 + 5^3 + 0^4 + 2*3^4. a(1317) = 1 since 1317 = 23^2 + 1^3 + 5^4 + 2*3^4. a(2288) = 1 since 2288 = 44^2 + 4^3 + 4^4 +2*2^4. a(2383) = 1 since 2383 = 1462 + 9^3 + 6^4 + 2*3^4. a(2543) = 1 since 2543 = 50^2 + 3^3 + 2^4 + 2*0^4. a(3167) = 1 since 3167 = 54^2 + 2^3 + 3^4 + 2*3^4. a(3717) = 1 since 3717 = 18^2 + 15^3 + 2^4 + 2*1^4. a(3974) = 1 since 3974 = 39^2 + 13^3 + 4^4 + 2*0^4. a(6847) = 1 since 6847 = 52^2 + 15^3 + 4^4 + 2*4^4. a(7918) = 1 since 7918 = 46^2 + 10^3 + 0^4 + 2*7^4. a(8328) = 1 since 8328 = 42^2 + 1^3 + 9^4 + 2*1^4. a(9096) = 1 since 9096 = 44^2 + 18^3 + 6^4 + 2*2^4. a(21935) = 1 since 21935 = 66^2 + 26^3 + 1^4 + 2*1^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. (See Remark 1.1.)
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120. (See Theorem 1.1 and Conjecture 1.1.)
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^3-y^4-2*z^4],r=r+1],{x,0,n^(1/3)},{y,0,(n-x^3)^(1/4)},{z,0,((n-x^3-y^4)/2)^(1/4)}];Print[n," ",r];Continue,{n,0,100}]
Comments