cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262829 (3,2)-primes (defined in Comments).

Original entry on oeis.org

2, 3, 7, 13, 31, 37, 43, 67, 79, 151, 157, 181, 193, 223, 241, 271, 283, 307, 331, 349, 373, 397, 409, 421, 433, 463, 499, 571, 613, 619, 631, 643, 661, 673, 691, 733, 757, 769, 787, 829, 853, 877, 937, 997, 1009, 1093, 1123, 1129, 1153, 1201, 1213, 1231
Offset: 1

Views

Author

Clark Kimberling, Oct 24 2015

Keywords

Comments

Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k).

Crossrefs

Programs

  • Mathematica
    {b1, b2} = {2, 3};
    u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A235266 *)
    v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &];  (* A262829 *)
    w = Intersection[u, v]; (* A262830 *)
    (* Peter J. C. Moses, Sep 27 2015 *)

A262832 {2,5}-primes (defined in Comments).

Original entry on oeis.org

2, 11, 13, 41, 151, 173, 181, 191, 223, 233, 241, 313, 331, 421, 443, 463, 541, 563, 641, 701, 733, 743, 953, 1373, 1451, 1471, 1483, 1753, 1783, 1831, 1993, 2011, 2143, 2161, 2351, 2411, 2693, 3041, 3061, 3491, 3571, 3623, 3761, 3943, 4051, 4373, 4643, 4813
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2015

Keywords

Comments

Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)).

Crossrefs

Programs

  • Mathematica
    {b1, b2} = {2, 5};
    u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A235475 *)
    v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262831 *)
    w = Intersection[u, v]; (* A262832 *)
    (* Peter J. C. Moses, Sep 27 2015 *)
Showing 1-2 of 2 results.