A262849 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each row divisible by 7 and column not divisible by 7, read as a binary number with top and left being the most significant bits.
6, 6, 13, 12, 34, 27, 318, 196, 132, 54, 900, 3181, 1336, 396, 109, 4536, 31050, 37635, 5184, 1264, 219, 34782, 352880, 771084, 420654, 31512, 3962, 438, 178926, 4679725, 17912392, 14762016, 3896365, 175820, 11886, 877, 1042284, 58693450, 481968171
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..1..1..1..0..0....0..0..0..1..1..1....0..0..1..1..1..0....0..0..0..0..0..0 ..0..0..0..1..1..1....1..1..1..0..0..0....0..1..1..1..0..0....1..1..1..1..1..1 ..0..0..1..1..1..0....0..1..0..1..0..1....1..1..0..0..0..1....1..0..0..0..1..1 ..0..0..1..1..1..0....0..1..0..1..0..1....0..1..1..1..0..0....1..0..0..0..1..1 ..1..1..1..1..1..1....0..1..0..1..0..1....1..1..1..0..0..0....1..0..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..70
Crossrefs
Column 1 is A033129(n+2).
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-3) -2*a(n-4)
k=2: [order 15]
k=3: [order 43]
k=4: [order 29]
Empirical for row n:
n=1: [linear recurrence of order 16]
Comments