cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262857 Number of ordered ways to write n as w^3 + 2*x^3 + y^2 + 2*z^2, where w, x, y and z are nonnegative integers.

Original entry on oeis.org

1, 2, 3, 4, 4, 3, 3, 2, 3, 5, 5, 6, 6, 3, 4, 1, 4, 6, 7, 10, 7, 5, 4, 2, 5, 8, 8, 9, 9, 6, 6, 2, 6, 10, 8, 13, 9, 6, 7, 5, 5, 8, 6, 9, 10, 6, 9, 4, 5, 9, 6, 13, 10, 7, 11, 6, 8, 10, 8, 10, 12, 9, 9, 7, 8, 13, 10, 16, 12, 6, 12, 8, 10, 13, 12, 13, 12, 8, 11, 7, 10, 16, 15, 17, 16, 6, 11, 7, 12, 16, 11, 16, 9, 10, 5, 6, 10, 15, 17, 18, 16
Offset: 0

Views

Author

Zhi-Wei Sun, Oct 03 2015

Keywords

Comments

Conjecture: We have {a*w^3+b*x^3+c*y^2+d*z^2: w,x,y,z = 0,1,2,...} = {0,1,2,...} if (a,b,c,d) is among the following 63 quadruples:
(1,1,1,2),(1,1,2,4),(1,2,1,1),(1,2,1,2),(1,2,1,3),(1,2,1,4),(1,2,1,6),(1,2,1,13),(1,2,2,3),(1,2,2,4),(1,2,2,5),(1,3,1,1),(1,3,1,2),(1,3,1,3),(1,3,1,5),(1,3,1,6),(1,3,2,3),(1,3,2,4),(1,3,2,5),(1,4,1,1),(1,4,1,2),(1,4,1,3),(1,4,2,2),(1,4,2,3),(1,4,2,5),(1,5,1,1),(1,5,1,2),(1,6,1,1),(1,6,1,3),(1,7,1,2),(1,8,1,2),(1,9,1,2),(1,9,2,4),(1,10,1,2),(1,11,1,2),(1,11,2,4),(1,12,1,2),(1,14,1,2),(1,15,1,2),(2,3,1,1),(2,3,1,2),(2,3,1,3),(2,3,1,4),(2,4,1,1),(2,4,1,2),(2,4,1,6),(2,4,1,8),(2,4,1,10),(2,5,1,3),(2,6,1,1),(2,7,1,3),(2,8,1,1),(2,8,1,4),(2,10,1,1),(2,13,1,1),(3,4,1,2),(3,5,1,2),(3,7,1,2),(3,9,1,2),(4,5,1,2),(4,6,1,2),(4,8,1,2),(4,11,1,2).
Conjecture verified up to 10^11 for all quadruples. - Mauro Fiorentini, Jul 18 2023

Examples

			a(7) = 2 since 7 = 1^3 + 2*0^3 + 2^2 + 2*1^2 = 1^3 + 2*1^3 + 2^2 + 2*0^2.
a(15) = 1 since 15 = 1^3 + 2*1^3 + 2^2 + 2*2^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^3-2y^3-2z^2],r=r+1],{x,0,n^(1/3)},{y,0,((n-x^3)/2)^(1/3)},{z,0,Sqrt[(n-x^3-2y^3)/2]}];Print[n," ",r];Continue,{n,0,100}]