A262875 Number of equal-sized disjoint subset combinations from a set of n items.
0, 1, 4, 14, 41, 127, 400, 1297, 4520, 17064, 64857, 262286, 1156325, 5199261, 23835336, 117674608, 609741279, 3268286263, 18109939168, 102866828839, 620474818814, 4005211833858, 25747541532731, 166978138395205, 1168773990780772
Offset: 1
Keywords
Examples
a(5) = 25+10+5+1 = 41 combinations of equal size disjoint subsets, i.e., given 5 items, there can be 2, 3, 4 or 5 subsets: A) Pairs can have 1 or 2 items, contributing 10+15=25: A.1) There are 10 distinct pairs of size 1: "1|2, 1|3, 1|4, 1|5, and 2|3, 2|4, 2|5, and 3|4, 3|5, 4|5". A.2) And 15 distinct pairs of size 2: "12|34, 12|35, 12|45, and 13|24, 13|25, 13|45, and 14|23, 14|25, 14|35, and 15|23, 15|24, 15|34, and 23|45, 24|35, 25|34". B) Triplet can have only 1 item, 10 of them: 1|2|3, 1|2|4, 1|2|5, and 1|3|4, 1|3|5, 1|4|5, and 2|3|4, 2|3|5, 2|4|5, 3|4|5. C) Four-tuple from one item, 5 in total: 1|2|3|4, and 1|2|3|5, 1|2|4|5, 1|3|4|5, finally 2|3|4|5. D) There is one 5-tuple: 1|2|3|4|5.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..600 (terms 1..100 from Viktar Karatchenia)
- Viktar Karatchenia, C++ program to calculate b(n,m) and a(n).
- Viktar Karatchenia, C++ file for InfInt class
- Viktar Karatchenia, Header file for InfInt class
Crossrefs
Cf. A097861 (b(n,2)).
Programs
-
Mathematica
Table[Sum[Sum[Product[Binomial[n - k*j, k], {j, 0, m - 1}]/m!, {k, 1, Floor[n/m]}], {m, 2, n}], {n, 1, 30}] (* Vaclav Kotesovec, Aug 05 2019 *) Table[Sum[Sum[n!/(k!^m * (n - k*m)! * m!), {k, 1, Floor[n/m]}], {m, 2, n}], {n, 1, 30}] (* Vaclav Kotesovec, Aug 05 2019 *)
-
PARI
a(n) = sum(m=2, n, sum(k=1, n\m, prod(j=0, m-1, binomial(n-k*j, k))/m!)); \\ Michel Marcus, Oct 04 2015
Formula
a(n) = Sum_{m=2..n} b(n,m), where b(n,m) = Sum_{k=1..floor(n/m)} (Product_{j=0..(m-1)} binomial(n-k*j, k))/m!.
Comments