A262885 Irregular triangle T(n,k) read by rows: T(n,k) = number of partitions of n into at least two distinct parts, where the largest part is n-k.
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 3, 2, 1, 1, 2, 2, 3, 4, 3, 1, 1, 1, 2, 2, 3, 4, 4, 3, 1, 1, 1, 2, 2, 3, 4, 5, 4, 3, 1, 1, 1, 2, 2, 3, 4, 5, 5, 5, 3, 1, 1, 2, 2, 3, 4, 5, 6, 6, 5, 2, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 5, 2
Offset: 1
Examples
Triangle starts T(1,1): n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 0 2 0 3 1 4 1 5 1 1 6 1 1 1 7 1 1 2 8 1 1 2 1 9 1 1 2 2 1 10 1 1 2 2 2 1 11 1 1 2 2 3 2 12 1 1 2 2 3 3 2 13 1 1 2 2 3 4 3 1 14 1 1 2 2 3 4 4 3 1 15 1 1 2 2 3 4 5 4 3 1 16 1 1 2 2 3 4 5 5 5 3 17 1 1 2 2 3 4 5 6 6 5 2 18 1 1 2 2 3 4 5 6 7 7 5 2 19 1 1 2 2 3 4 5 6 8 8 7 5 1 20 1 1 2 2 3 4 5 6 8 9 9 8 4 1 T(15,8) = 4: the four partitions of 15 into at least two distinct parts with largest part 15-8 = 7 are {7,6,2}; {7,5,3}; {7,5,2,1} and {7,4,3,1}. T(14,k) for k=1..F, with F = floor(13/2) = 6: T(14,1) = 0+1 = 1; T(14,2) = 0+1 = 1; T(14,3) = 1+1 = 2; T(14,4) = 1+1 = 2; T(14,5) = 2+1 = 3; T(14,6) = 3+1 = 4. T(14,k) for k>6: T(14,7) = T(7,1)+T(7,2)+T(7,3) = 1+1+2 = 4; T(14,8) = T(8,3)+T(8,4) = 2+1 = 3; T(14,9) = T(9,5) = 1.
Formula
Given T(1,1) = T(2,1) = 0, to find row n>=3: Let k" be the maximum value of k in row g
T(n,k) = S(g)+1 g=k when g<=F (equivalent to A000009(g));
T(n,k) = Sum_{j=2*(g-F)-1..k"} T(g,j) g=k when g>F, 2*(g-F)-1 <= k" and n is even;
T(n,k) = Sum_{j=2*(g-F)..k"} T(g,j) g=k when g>F, 2*(g-F) <= k" and n is odd.
Comments