A262900 a(n) = number of leaf-children n has in the tree generated by edge-relation A049820(child) = parent.
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0
Offset: 0
Keywords
Examples
a(4) = 1, as there is only one such term k in A045765 which satisfies the condition A049820(k) = 4, namely 8 (8 - d(8) = 4). a(5) = 1, as the only term in A045765 satisfying the condition is 7, as 7 - d(7) = 5. a(22) = 2, as there are exactly two terms in A045765 satisfying the condition, namely 25 and 28, as 25 - d(25) = 28 - d(28) = 22.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65538
Crossrefs
Programs
Formula
In the above formula [ ] stands for Iverson bracket, giving in the first instance as its result 1 only when A049820(k) = n (that is, when k is really a child of n), and 0 otherwise, and in the second instance 1 only when A060990(k) = 0 (that is, when k itself has no children), and 0 otherwise. - Comment corrected by Antti Karttunen, Nov 27 2015
Comments