A262917 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row divisible by 3 and each column divisible by 7, read as a binary number with top and left being the most significant bits.
1, 1, 2, 1, 3, 3, 1, 6, 5, 5, 1, 11, 15, 9, 10, 1, 22, 33, 53, 27, 19, 1, 43, 99, 137, 318, 61, 37, 1, 86, 261, 853, 1411, 1207, 145, 74, 1, 171, 783, 2953, 18190, 7417, 5797, 435, 147, 1, 342, 2241, 17333, 121507, 152587, 51769, 34782, 1253, 293, 1, 683, 6723, 71721
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..1..0....0..1..1..1..1....1..0..0..1..0....0..0..0..0..0 ..1..1..0..0..0....0..1..1..0..0....1..1..0..0..0....0..0..0..0..0 ..1..1..1..1..0....0..1..1..1..1....1..1..0..1..1....0..0..1..1..0 ..1..1..0..0..0....0..0..0..0..0....0..1..0..0..1....0..0..1..1..0 ..0..0..1..1..0....0..0..0..1..1....0..0..0..1..1....0..0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..112
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-3) -2*a(n-4)
k=2: [order 15]
k=3: [order 15]
Empirical for row n:
n=2: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
n=3: a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3)
n=4: [order 8]
n=5: [order 10]
n=6: [order 65]
Comments