A262951 a(1) = 1, a(2) = 3, a(3) = 4 and for n>=4, a(n) = (a(n-3)+a(n-2)+a(n-1)+k) mod 10 where k = a(n/6) if n is divisible by 6, else 0.
1, 3, 4, 8, 5, 7, 0, 2, 9, 1, 2, 5, 8, 5, 8, 1, 4, 7, 2, 3, 2, 7, 2, 9, 8, 9, 6, 3, 8, 2, 3, 3, 8, 4, 5, 4, 3, 2, 9, 4, 5, 8, 7, 0, 5, 2, 7, 6, 5, 8, 9, 2, 9, 9, 0, 8, 7, 5, 0, 3, 8, 1, 2, 1, 4, 9, 4, 7, 0, 1, 8, 4, 3, 5, 2, 0, 7, 7, 4, 8, 9, 1, 8, 3, 2, 3, 8
Offset: 1
Keywords
Examples
a(6) = 4+8+5 = (17 + a(6/6)) mod 10 = (17 + 1) mod 10 = 8.
Links
- Maarten Bullynck, L’histoire de l’informatique et l’histoire des mathématiques : rencontres, opportunités et écueils, Images des Mathématiques, CNRS, 2015 (in French).
- Johann Heinrich Lambert, Anlage zur Architectonic, oder Theorie des Einfachen und des Ersten in der philosophischen und mathematischen Erkenntniß, 1771.
- Index entries for sequences related to pseudo-random numbers.
Crossrefs
Cf. A130893.
Programs
-
PARI
lista(nn) = {va = vector(nn); va[1] = 1; va[2] = 3; va[3] = 4; for (k=4, nn, va[k] = va[k-3] + va[k-2] + va[k-1]; if (! (k % 6) && (k > 6), va[k] += va[k/6]); va[k] = va[k] % 10;); va;}
Formula
a(n) = (a(n-3) + a(n-2) + a(n-1)) mod 10 if n is not a multiple of 6.
a(n) = (a(n-3) + a(n-2) + a(n-1) + a(n/6)) mod 10 if n is a multiple of 6.
Comments