cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262956 Number of ordered pairs (x,y) with x >= 0 and y > 0 such that n - x^4 - y*(y+1)/2 is a square or a square minus 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 2, 2, 5, 5, 3, 2, 3, 4, 4, 4, 5, 7, 5, 3, 6, 5, 3, 7, 8, 5, 4, 5, 7, 8, 6, 2, 4, 5, 5, 10, 7, 5, 7, 6, 4, 3, 5, 8, 10, 6, 2, 3, 5, 6, 10, 9, 5, 7, 6, 4, 4, 5, 6, 8, 5, 3, 8, 7, 5, 7, 5, 6, 11, 9, 5, 3, 5, 5, 4, 4, 3, 8, 9, 7, 10, 7, 5, 11, 10, 8, 5, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 05 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. In other words, for any positive integer n, either n or n + 1 can be written as the sum of a fourth power, a square and a positive triangular number.
We also guess that a(n) = 1 only for n = 1, 89, 244, 464, 5243, 14343.

Examples

			a(1) = 1 since 1 = 0^4 + 1*2/2 + 0^2.
a(89) = 1 since 89 = 2^4 + 4*5/2 + 8^2 - 1.
a(244) = 1 since 244 = 2^4 + 2*3/2 + 15^2.
a(464) = 1 since 464 = 2^4 + 22*23/2 + 14^2 - 1.
a(5243) = 1 since 5243 = 0^4 + 50*51/2 + 63^2 - 1.
a(14343) = 1 since 14343 = 2^4 + 163*164/2 + 31^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]||IntegerQ[Sqrt[n+1]]
    Do[r=0;Do[If[SQ[n-x^4-y(y+1)/2],r=r+1],{x,0,n^(1/4)},{y,1,(Sqrt[8(n-x^4)+1]-1)/2}];Print[n," ",r];Continue,{n,1,100}]