cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A270566 Number of ordered ways to write n as x^4 + y*(3y+1)/2 + z*(7z+1)/2, where x, y and z are integers with x nonnegative.

Original entry on oeis.org

1, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 4, 4, 4, 5, 5, 3, 3, 1, 3, 5, 4, 3, 3, 5, 8, 4, 3, 4, 6, 6, 2, 6, 4, 4, 5, 4, 3, 3, 4, 5, 1, 3, 3, 2, 6, 2, 4, 5, 8, 8, 4, 3, 5, 6, 6, 2, 1, 4, 3, 5, 3, 2, 3, 7, 8, 3, 5, 5, 4, 3, 4, 1, 1, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 19 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 24, 47, 63, 78, 79, 143, 153, 325, 494, 949, 1079, 3328, 4335, 5609, 7949, 7967, 8888, 9665.
Conjecture verified for n up to 10^11. - Mauro Fiorentini, Jul 24 2023

Examples

			a(24) = 1 since 24 = 2^4 + (-2)*(3*(-2)+1)/2 + (-1)*(7*(-1)+1)/2.
a(78) = 1 since 78 = 1^4 + 7*(3*7+1)/2 + 0*(7*0+1)/2.
a(143) = 1 since 143 = 1^4 + 6*(3*6+1)/2 + (-5)*(7*(-5)+1)/2.
a(494) = 1 since 494 = 4^4 + (-7)*(3*(-7)+1)/2 + (-7)*(7*(-7)+1)/2.
a(949) = 1 since 949 = 4^4 + 0*(3*0+1)/2 + 14*(7*14+1)/2.
a(1079) = 1 since 1079 = 0^4 + 25*(3*25+1)/2 + 6*(7*6+1)/2.
a(3328) = 1 since 3328 = 0^4 + 38*(3*38+1)/2 + 18*(7*18+1)/2.
a(4335) = 1 since 4335 = 2^4 + 49*(3*49+1)/2 + 14*(7*14+1)/2.
a(5609) = 1 since 5609 = 0^4 + (-61)*(3*(-61)+1)/2 + 4*(7*4+1)/2.
a(7949) = 1 since 7949 = 3^4 + 43*(3*43+1)/2 + 38*(7*38+1)/2.
a(7967) = 1 since 7967 = 7^4 + (-61)*(3*(-61)+1)/2 + 2*(7*2+1)/2.
a(8888) = 1 since 8888 = 0^4 + (-77)*(3*(-77)+1)/2 + 3*(7*3+1)/2.
a(9665) = 1 since 9665 = 3^4 + 73*(3*73+1)/2 + 21*(7*21+1)/2.
		

Crossrefs

Programs

  • Mathematica
    (* From Zhi-Wei Sun, Start *)
    pQ[n_] := pQ[n] = IntegerQ[Sqrt[24 n + 1]];
    Do[r = 0; Do[If[pQ[n - x^4 - y (7 y + 1)/2], r = r + 1], {x, 0, n^(1/4)}, {y, -Floor[(Sqrt[56 (n - x^4) + 1] + 1)/14], (Sqrt[56 (n - x^4) + 1] - 1)/14}]; Print[n, " ", r]; Continue, {n, 0, 80}]
    (* From Zhi-Wei Sun, End *)
    A270566[n_] := Length@Solve[x >= 0 && n == x^4 + y*(3 y + 1)/2 + z*(7 z + 1)/2, {x, y, z}, Integers];
    Array[A270566, 25, 0] (* JungHwan Min, Mar 19 2016 *)

A270533 Number of ordered ways to write n = x^4 + x^3 + y^2 + z*(3z-1)/2, where x and y are nonnegative integers, and z is an integer.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 3, 2, 2, 5, 2, 5, 2, 1, 3, 1, 4, 3, 5, 6, 4, 5, 4, 5, 3, 4, 4, 2, 4, 3, 5, 5, 4, 8, 4, 4, 4, 3, 3, 3, 3, 2, 4, 5, 9, 3, 5, 4, 3, 4, 2, 4, 3, 6, 4, 5, 3, 5, 4, 5, 4, 4, 2, 1, 6, 2, 7, 2, 7, 5, 2, 5, 4, 3, 5, 4, 3, 5, 3, 6, 1, 7, 4, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 18 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 20, 22, 70, 87, 167, 252, 388, 562, 636, 658, 873, 2598, 14979, 18892, 20824.
(ii) Each n = 0,1,2,... can be written as x*P(x) + y^2 + z*(3z-1)/2 with x and y nonnegative integers, and z an integer, where P(x) is either of the polynomials x^3+2, x^3+3, x^3+2x+8, x^3+x^2+4x+2, x^3+x^2+7x+6.
(iii) Any nonnegative integer can be expressed as x*(x^3+3) + y*(5y+4) + z*(3z-1)/2, where x is an nonnegative integer, and y and z are integers.
See also A270516 for a similar conjecture.

Examples

			a(20) = 1 since 20 = 1^4 + 1^3 + 4^2 + (-1)*(3*(-1)-1)/2.
a(22) = 1 since 22 = 0^4 + 0^3 + 0^2 + 4*(3*4-1)/2.
a(873) = 1 since 873 = 5^4 + 5^3 + 11^2 + (-1)*(3*(-1)-1)/2.
a(2598) = 1 since 2598 =  4^4 + 4^3 + 4^2 + 39*(3*39-1)/2.
a(14979) = 1 since 14979 = 1^4 + 1^3 + 51^2 + 91*(3*91-1)/2.
a(18892) = 1 since 18892 = 3^4 + 3^3 + 137^2 + (-3)*(3*(-3)-1)/2.
a(20824) = 1 since 20824 = 1^4 + 1^3 + 115^2 + (-71)*(3*(-71)-1)/2.
		

Crossrefs

Programs

  • Mathematica
    pQ[x_]:=pQ[x]=IntegerQ[Sqrt[24x+1]]
    Do[r=0;Do[If[pQ[n-y^2-x^3*(x+1)],r=r+1],{y,0,Sqrt[n]},{x,0,(n-y^2)^(1/4)}];Print[n," ",r];Continue,{n,0,90}]

A262941 Number of ordered pairs (x,y) with x >= 0 and y > 0 such that n - x^4 - y*(y+1)/2 is an even square or twice a square.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 1, 2, 3, 1, 3, 3, 6, 3, 4, 4, 4, 4, 3, 4, 2, 3, 3, 4, 3, 2, 5, 3, 4, 3, 6, 5, 6, 4, 2, 3, 2, 4, 4, 4, 5, 3, 3, 1, 3, 5, 6, 6, 4, 3, 3, 4, 1, 5, 4, 3, 4, 3, 4, 3, 4, 4, 5, 3, 5, 4, 5, 4, 4, 3, 2, 4, 6, 3, 4, 6, 4, 5, 2, 7, 7, 4, 3, 3, 5, 4, 5, 6, 6, 5, 2, 6, 4, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 04 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. In other words, any positive integer n can be written as x^4 + 2^k*y^2 + z*(z+1)/2, where k is 1 or 2, and x,y,z are integers with z > 0.
This has been verified for n up to 2*10^6. We also guess that a(n) = 1 only for n = 1, 2, 13, 16, 50, 59, 239, 493, 1156, 1492, 1984, 3332.
See also A262944, A262945, A262954, A262955, A262956 for similar conjectures.

Examples

			a(1)    = 1 since    1 = 0^4 +    0^2 +  1*2/2  with  0 even.
a(2)    = 1 since    2 = 1^4 +    0^2 +  1*2/2  with  0 even.
a(13)   = 1 since   13 = 1^4 + 2* 1^2 +  4*5/2.
a(16)   = 1 since   16 = 1^4 +    0^2 +  5*6/2  with  0 even.
a(50)   = 1 since   50 = 1^4 +    2^2 +  9*10/2 with  2 even.
a(59)   = 1 since   59 = 0^4 +    2^2 + 10*11/2 with  2 even.
a(239)  = 1 since  239 = 0^4 + 2* 2^2 + 21*22/2 with  2 even.
a(493)  = 1 since  493 = 2^4 +   18^2 + 17*18/2 with 18 even.
a(1156) = 1 since 1156 = 1^4 + 2*24^2 +  2*3/2  with 24 even.
a(1492) = 1 since 1492 = 2^4 + 2* 7^2 + 52*53/2.
a(1984) = 1 since 1984 = 5^4 +   18^2 + 45*46/2 with 18 even.
a(3332) = 1 since 3332 = 5^4 +   52^2 +  2*3/2  with 52 even.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n/2]]||IntegerQ[Sqrt[n/4]]
    Do[r=0;Do[If[SQ[n-x^4-y(y+1)/2],r=r+1],{x,0,n^(1/4)},{y,1,(Sqrt[8(n-x^4)+1]-1)/2}];Print[n," ",r];Continue,{n,1,100}]

A270559 Number of ordered ways to write n as x^4 + x^3 + y^2 + z*(z+1)/2, where x, y and z are integers with x nonzero, y nonnegative and z positive.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 1, 3, 4, 2, 5, 2, 3, 4, 2, 3, 4, 5, 1, 4, 3, 3, 4, 3, 4, 5, 5, 3, 6, 5, 3, 3, 6, 2, 4, 6, 3, 9, 4, 2, 3, 4, 3, 7, 6, 3, 6, 2, 4, 2, 6, 5, 7, 6, 4, 5, 3, 6, 4, 11, 1, 5, 9, 3, 6, 5, 3, 8, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 18 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0. In other words, for each n = 1,2,3,... there are integers x and y such that n-(x^4+x^3+y^2) is a positive triangular number.
(ii) a(n) = 1 only for n = 1, 2, 8, 20, 62, 97, 296, 1493, 4283, 4346, 5433.
In contrast, the author conjectured in A262813 that any positive integer can be expressed as the sum of a nonnegative cube, a square and a positive triangular number.

Examples

			a(1) = 1 since 1 = (-1)^4 + (-1)^3 + 0^2 + 1*2/2.
a(2) = 1 since 2 = (-1)^4 + (-1)^3 + 1^2 + 1*2/2.
a(8) = 1 since 8 = 1^4 + 1^3 + 0^2 + 3*4/2.
a(20) = 1 since 20 = (-2)^4 + (-2)^3 + 3^2 + 2*3/2.
a(62) = 1 since 62 = (-2)^4 + (-2)^3 + 3^2 + 9*10/2.
a(97) = 1 since 97 = 1^4 + 1^3 + 2^2 + 13*14/2.
a(296) = 1 since 296 = (-4)^4 + (-4)^3 + 7^2 + 10*11/2.
a(1493) = 1 since 1493 = (-2)^4 + (-2)^3 + 0^2 + 54*55/2.
a(4283) = 1 since 4283 = (-6)^4 + (-6)^3 + 50^2 + 37*38/2.
a(4346) = 1 since 4346 = (-3)^4 + (-3)^3 + 49^2 + 61*62/2.
a(5433) = 1 since 5433 = (-8)^4 + (-8)^3 + 14^2 + 57*58/2.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[x!=0&&TQ[n-y^2-x^4-x^3],r=r+1],{y,0,Sqrt[n]},{x,-1-Floor[(n-y^2)^(1/4)],(n-y^2)^(1/4)}];Print[n," ",r];Continue,{n,1,10000}]

A270516 Number of ordered ways to write n = x^3*(x+1) + y*(y+1)/2 + z*(3z+2), where x and y are nonnegative integers, and z is an integer.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 4, 2, 3, 4, 1, 3, 1, 2, 3, 3, 3, 2, 2, 3, 4, 3, 5, 3, 4, 2, 4, 4, 3, 5, 2, 5, 2, 5, 5, 2, 5, 5, 3, 4, 3, 5, 4, 5, 7, 2, 4, 1, 5, 2, 4, 3, 2, 5, 3, 6, 3, 3, 5, 6, 2, 5, 2, 4, 5, 4, 8, 3, 4, 5, 1, 5, 3, 1, 4, 3, 5, 4, 5
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 18 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and the only values of n > 1428 with a(n) = 1 are 2205, 2259, 3556, 4107, 4337, 5387, 9331, 16561, 22237, 27569, 63947, 78610.
(ii) Any natural number can be written as x*(x^3+2) + y*(y+1)/2 + z*(3z+1), where x and y are nonnegative integers, and z is an integer.
(iii) Every n = 0,1,2,... can be written as x*(x^3+x^2+6) + y*(y+1)/2 + z*(3z+2) (or x*(x^3+x^2+4x+1) + y*(y+1)/2 + z*(3z+1)), where x and y are nonnegative integers, and z is an integer.
See also A270533 for a similar conjecture.

Examples

			a(72) = 1 since 72 = 2^3*3 + 5*6/2 + 3*(3*3+2).
a(75) = 1 since 75 = 0^3*1 + 4*5/2 + (-5)*(3*(-5)+2).
a(5387) = 1 since 5387 = 7^3*8 + 2*3/2 + (-30)*(3*(-30)+2).
a(9331) = 1 since 9331 = 8^3*9 + 2*3/2 + (-40)*(3*(-40)+2).
a(16561) = 1 since 16561 = 1^3*2 + 101*102/2 + (-62)*(3*(-62)+2).
a(22237) = 1 since 22237 = 6^3*7 + 104*105/2 + 71*(3*71+2).
a(27569) = 1 since 27569 = 2^3*3 + 49*50/2 + (-94)*(3*(-94)+2).
a(63947) = 1 since 63947 = 0^3*1 + 173*174/2 + (-128)*(3*(-128)+2).
a(78610) = 1 since 78610 = 16^3*17 + 52*53/2 + 50*(3*50+2).
		

Crossrefs

Programs

  • Mathematica
    OQ[x_]:=OQ[x]=IntegerQ[Sqrt[3x+1]]
    Do[r=0;Do[If[OQ[n-y(y+1)/2-x^3*(x+1)],r=r+1],{y,0,(Sqrt[8n+1]-1)/2},{x,0,(n-y(y+1)/2)^(1/4)}];Print[n," ",r];Continue,{n,0,80}]

A262954 Number of ordered pairs (x,y) with x >= 0 and y > 0 such that n - x^4 - y*(y+1)/2 has the form z^2 or 8*z^2.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 2, 1, 4, 5, 3, 1, 2, 4, 3, 3, 3, 5, 4, 2, 4, 5, 2, 3, 6, 4, 3, 4, 5, 5, 4, 3, 2, 5, 4, 7, 7, 3, 4, 3, 4, 2, 4, 6, 6, 6, 2, 2, 2, 4, 5, 9, 5, 4, 5, 2, 3, 2, 5, 5, 5, 2, 4, 5, 3, 4, 5, 4, 5, 7, 3, 3, 3, 6, 3, 4, 4, 5, 6, 3, 7, 7, 3, 4, 8, 7, 7, 1, 3, 9, 8, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 05 2015

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 9, 13, 89, 449, 524, 1049, 2164, 14969, 51334.
(ii) For any positive integer n, there are integers x and y > 0 such that n - x^4 - T(y) has the form T(z) or 4*T(z), where T(k) refers to the triangular number k*(k+1)/2.
(iii) For every n = 1,2,3,... there are integers x and y > 0 such that n - x^4 - T(y) has the form T(z) or 2*z^2.
(iv) For {c,d} = {1,2} and n > 0, there are integers x and y > 0 such that n - 2*x^4 - T(y) has the form c*T(z) or d*z^2.
(v) For each n = 1,2,3,... there are integers x and y > 0 such that n - 4*x^4 - T(y) has the form 2*T(z) or z^2.
See also A262941, A262944, A262945, A262954, A262955 and A262956 for similar conjectures.

Examples

			a(1) = 1 since 1 = 0^4 + 1*2/2 + 0^2.
a(9) = 1 since 9 = 0^4 + 1*2/2 + 8*1^2.
a(13) = 1 since 13 = 1^4 + 2*3/2 + 3^2.
a(89) = 1 since 89 = 2^4 + 1*2/2 + 8*3^2.
a(449) = 1 since 449 = 0^4 + 22*23/2 + 14^2.
a(524) = 1 since 524 = 3^4 + 29*30/2 + 8*1^2.
a(1049) = 1 since 1049 = 5^4 + 16*17/2 + 8*6^2.
a(2164) = 1 since 2164 = 1^4 + 34*35/2 + 8*14^2.
a(14969) = 1 since 14969 = 8^4 + 145*146/2 + 8*6^2.
a(51334) = 1 since 51334 = 5^4 + 313*314/2 + 8*14^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]||IntegerQ[Sqrt[n/8]]
    Do[r=0;Do[If[SQ[n-x^4-y(y+1)/2],r=r+1],{x,0,n^(1/4)},{y,1,(Sqrt[8(n-x^4)+1]-1)/2}];Print[n," ",r];Continue,{n,1,100}]

A306227 Number of ways to write n as w + x^4 + y*(y+1)/2 + z*(z+1)/2, where w is 0 or 1, and x, y, z are nonnegative integers with x >= w and y < z.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 3, 4, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 3, 4, 3, 4, 5, 4, 2, 2, 3, 5, 7, 4, 3, 3, 2, 3, 4, 4, 4, 5, 5, 2, 3, 4, 4, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 3, 2, 4, 5, 6, 5, 2, 2, 4, 5, 4, 4, 2, 3, 4, 4, 2, 3, 6, 7, 8, 4, 5, 4, 3, 5, 5, 3, 4, 7, 7, 6, 6, 4, 7, 6, 4, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 30 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. In other words, any positive integer can be written as the sum of two fourth powers one of which is 0 or 1, and two distinct triangular numbers.
We have verified a(n) > 0 for all n = 1..10^6. The conjecture implies that the set S = {x^4 + y*(y+1)/2: x,y = 0,1,2,...} is an additive basis of order two (i.e., the sumset S + S coincides with {0,1,2,...}).
See also A306225 for a similar conjecture.

Examples

			a(1) = 1 with 1 = 0 + 0^4 + 0*1/2 + 1*2/2.
a(2) = 1 with 2 = 0 + 1^4 + 0*1/2 + 1*2/2.
a(14) = 1 with 14 = 0 + 1^4 + 2*3/2 + 4*5/2.
a(3774) = 1 with 3774 = 1 + 5^4 + 52*53/2 + 59*60/2.
a(7035) = 1 with 7035 = 0 + 3^4 + 48*49/2 + 107*108/2.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[r=0;Do[If[TQ[n-x-y^4-z(z+1)/2],r=r+1],{x,0,Min[1,(n-1)/2]},{y,x,(n-1-x)^(1/4)},{z,0,(Sqrt[4(n-1-x-y^4)+1]-1)/2}];tab=Append[tab,r],{n,1,100}];Print[tab]

A280356 Number of ways to write n as x^4 + y^3 + z^2 + 2^k, where x,y,z are nonnegative integers and k is a positive integer.

Original entry on oeis.org

0, 1, 3, 4, 4, 4, 3, 3, 5, 5, 4, 5, 6, 5, 2, 3, 7, 8, 7, 7, 8, 5, 1, 4, 9, 8, 5, 7, 8, 6, 3, 8, 14, 11, 7, 8, 7, 4, 4, 8, 13, 9, 4, 8, 8, 5, 4, 8, 11, 5, 5, 8, 8, 6, 4, 6, 9, 6, 6, 10, 6, 2, 3, 4, 10, 10, 9, 13, 12, 7, 2, 7, 11, 9, 7, 9, 6, 2, 3, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 01 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 23, 1135, 6415, 6471.
(ii) If P(x,y) is one of the polynomials 3*x^4 + y^3 and x^6 + 3*y^2, then any positive integer n can be written as P(x,y) + z^2 + 2^k with x,y,z and k nonnegative integers.
We have verified that a(n) > 0 for all n = 2..2*10^7, and that part (ii) of the conjecture holds for all n = 1..10^7.
We also find finitely many polynomials of the form a*x^m + b*y^2 (including x^4 + y^2 and 10*x^5 + y^2) with a and b positive integers and m <= 5, for which it seems that any positive integer can be written as P(x,y) + z^2 + 2^k with x,y,z,k nonnegative integers.
See also A280153 for a similar conjecture involving powers of 4 or 8.
Qing-Hu Hou at Tianjin Univ. has verified that a(n) > 0 for all n = 2..10^9. In 2017, the author announced to offer US $234 as the prize for the first correct solution to his conjecture that a(n) > 0 for all n > 1. - Zhi-Wei Sun, Dec 30 2017

Examples

			a(2) = 1 since 2 = 0^4 + 0^3 + 0^2 + 2^1.
a(23) = 1 since 23 = 2^4 + 1^3 + 2^2 + 2^1.
a(1135) = 1 since 1135 = 0^4 + 7^3 + 28^2 + 2^3.
a(6415) = 1 since 6415 = 1^4 + 13^3 + 11^2 + 2^12.
a(6471) = 1 since 6471 = 1^4 + 13^3 + 57^2 + 2^10.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    In[2]:= Do[r=0;Do[If[SQ[n-2^k-x^4-y^3],r=r+1],{k,1,Log[2,n]},{x,0,(n-2^k)^(1/4)},{y,0,(n-2^k-x^4)^(1/3)}];Print[n," ",r];Continue,{n,1,80}]

A262959 Positive integers that cannot be written as the sum of a fourth power, a square and a positive triangular number.

Original entry on oeis.org

9, 34, 63, 89, 99, 139, 164, 174, 193, 204, 245, 314, 324, 399, 424, 454, 464, 489, 504, 524, 549, 714, 1049, 1089, 1149, 1174, 1439, 1504, 1539, 1639, 1714, 1799, 1814, 1919, 2164, 2239, 2313, 2374, 2414, 2439, 2764, 2789, 3079, 3319, 3414, 3669, 3774, 3814, 4019, 4114
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 05 2015

Keywords

Comments

Conjecture: (i) Each term is congruent to one of 3, 4, 5, 9 modulo 10.
(ii) a(n+1) - a(n) > 4 for all n > 0.
Part (ii) of this conjecture is stronger than the conjecture in A262956. Note that a(139) - a(138) = 18089 - 18084 = 5.

Examples

			a(1) = 9 since each of 1..8 can be written as x^4 + y^2 + z*(z+1)/2 with z > 0, but 9 cannot be represented in this way. Clearly, 1 = 0^4 + 0^2 + 1*2/2, 2 = 0^4 + 1^2 + 1*2/2, 3 = 1^4 + 1^2 + 1*2/2, 4 = 0^4 + 1^2 + 2*3/2, 5 = 1^4 + 1^2 + 2*3/2, 6 = 0^4 + 0^2 + 3*4/2, 7 = 0^4 + 1^2 + 3*4/2 and 8 = 1^3 + 1^2 + 3*4/2.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]]
    n=0;Do[Do[If[TQ[m-x^4-y^2],Goto[aa]],{x,0,m^(1/4)},{y,0,Sqrt[m-x^4]}]; n=n+1;Print[n," ",m];Label[aa];Continue,{m,1,5000}]

A270594 Number of ordered ways to write n as the sum of a triangular number, a positive square and the square of a generalized pentagonal number (A001318).

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 2, 4, 2, 3, 5, 2, 2, 3, 3, 4, 3, 2, 4, 5, 1, 2, 5, 1, 3, 7, 3, 2, 6, 5, 3, 6, 2, 2, 5, 4, 6, 4, 3, 5, 8, 2, 2, 6, 2, 5, 5, 1, 4, 9, 5, 3, 8, 5, 4, 8, 4, 3, 5, 5, 5, 6, 3, 6, 11, 2, 3, 9, 2, 5, 12, 2, 2, 9, 6, 3, 4, 4, 5, 6, 6, 6, 5, 5, 6, 11, 2, 4, 8, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 19 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 21, 24, 48, 90, 138, 213, 283, 462, 468, 567, 573, 1998, 2068, 2488, 2687, 5208, 5547, 5638, 6093, 6492, 6548, 6717, 7538, 7731, 8522, 14763, 16222, 17143, 24958, 26148.
(ii) Let T(x) = x(x+1)/2, pen(x) = x(3x+1)/2 and hep(x) = x(5x+3)/2. Then any natural number can be written as P(x,y,z) with x, y and z integers, where P(x,y,z) is either of the following polynomials: T(x)^2+T(y)+z(5z+1)/2, T(x)^2+T(y)+z(3z+j) (j = 1,2), T(x)^2+y^2+pen(z), T(x)^2+pen(y)+hep(z), T(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), T(x)^2+pen(y)+z(4z+j) (j = 1,3), T(x)^2+pen(y)+z(5z+j) (j = 1,3,4), T(x)^2+pen(y)+z(11z+7)/2, T(x)^2+y(5y+1)/2+z(3z+2), T(x)^2+hep(y)+z(3z+2), pen(x)^2+T(y)+pen(z), pen(x)^2+T(y)+2*pen(z), pen(x)^2+T(y)+z(9z+7)/2, pen(x)^2+y^2+pen(z), pen(x)^2+2*T(y)+pen(z), pen(x)^2+pen(y)+3*T(z), pen(x)^2+pen(y)+2z^2, pen(x)^2+pen(y)+2*pen(z), pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), pen(x)^2+pen(y)+z(4z+3), pen(x)^2+pen(y)+z(9z+1)/2, pen(x)^2+pen(y)+3*pen(z), pen(x)^2+pen(y)+z(5z+j) (j = 1,2,3,4), pen(x)^2+pen(y)+z(11z+j)/2 (j = 7,9), pen(x)^2+pen(y)+z(7z+1), pen(x)^2+pen(y)+3*hep(z), pen(x)^2+y(5y+j)/2+z(3z+k) (j = 1,3; k = 1,2), pen(x)^2+hep(y)+z(7z+j)/2 (j = 1,3,5), pen(x)^2+hep(y)+z(9z+5)/2, pen(y)^2+2pen(y)+z(3z+2), pen(x)^2+2*pen(y)+3*pen(z), (x(5x+1)/2)^2+2*T(y)+pen(z), (x(5x+1)/2)^2+pen(y)+z(7z+3)/2, (x(5x+1)/2)^2+pen(y)+z(4z+1), (x(5x+1)/2)^2+hep(y)+2*pen(z), hep(x)^2+T(y)+2*pen(z), hep(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), hep(x)^2+pen(y)+z(4z+1), hep(x)^2+pen(y)+z(5z+4), 4*pen(x)^2+T(y)+hep(z), 4*pen(x)^2+T(y)+2*pen(z), 4*pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), (x(3x+2))^2+y^2+pen(z), (x(3x+2))^2+pen(y)+z(7z+j)/2 (j = 3,5), 2*T(x)^2+T(y)+z(3z+j) (j = 1,2), 2*T(x)^2+y^2+pen(z), 2*T(x)^2+2*T(y)+pen(z), 2*T(x)^2+pen(y)+z(7z+j)/2 (j = 1,5), 2*T(x)^2+pen(y)+z(5z+1), 2*pen(y)^2+T(y)+z(3z+2), 2*pen(x)^2+y^2+pen(z), 2*pen(x)^2+pen(y)+z(7z+3)/2, 2*pen(x)^2+pen(y)+z(4z+j) (j = 1,3), 2*pen(x)^2+pen(y)+z(5z+4), 2*pen(x)^2+pen(y)+z(7z+1), 2*pen(x)^2+hep(y)+2*pen(z), 2*hep(x)^2+pen(y)+z(7z+5)/2, 3*pen(x)^2+T(y)+z(3z+2), 3*pen(x)^2+y^2+pen(z), 3*pen(x)^2+2*T(y)+pen(z), 3*pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), 3*pen(x)^2+pen(y)+z(4z+1), 6*pen(x)^2+pen(y)+z(7z+3)/2.
See also A270566 for a similar conjecture involving four powers.
It is known that any positive integer can be written as the sum of a triangular number, a square and an odd square.

Examples

			a(21) = 1 since 21 = 1*2/2 + 4^2 + (1*(3*1+1)/2)^2.
a(24) = 1 since 24 = 5*6/2 + 3^2 + (0*(3*0-1)/2)^2.
a(468) = 1 since 468 = 0*1/2 + 18^2 + (3*(3*3-1)/2)^2.
a(7538) = 1 since 7538 = 64*65/2 + 47^2 + (6*(3*6+1)/2)^2.
a(7731) = 1 since 7731 = 82*83/2 + 62^2 + (4*(3*4-1)/2)^2.
a(8522) = 1 since 8522 = 127*128/2 + 13^2 + (3*(3*3+1)/2)^2.
a(14763) = 1 since 14763 = 164*165/2 + 33^2 + (3*(3*3-1)/2)^2.
a(16222) = 1 since 16222 = 168*169/2 + 45^2 + (1*(3*1-1)/2)^2.
a(17143) = 1 since 17143 = 182*183/2 + 21^2 + (2*(3*2+1)/2)^2.
a(24958) = 1 since 24958 = 216*217/2 + 39^2 + (1*(3*1-1)/2)^2.
a(26148) = 1 since 26148 = 10*11/2 + 142^2 + (7*(3*7+1)/2)^2.
		

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=pQ[n]=IntegerQ[n]&&IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[pQ[Sqrt[n-x^2-y(y+1)/2]],r=r+1],{x,1,Sqrt[n]},{y,0,(Sqrt[8(n-x^2)+1]-1)/2}];Print[n," ",r];Continue,{n,1,90}]
Showing 1-10 of 13 results. Next