A262957 Numerators of the n-th iteration of the alternating continued fraction formed from the positive integers, starting with (1 - ...).
2, 3, 19, 64, 538, 2833, 29169, 210308, 2572158, 23595915, 334778571, 3732092084, 60305234822, 791741083537, 14359827157009, 217037153818264, 4366918714540522, 74685204276602819, 1651116684587556019, 31524723785455714840, 759659139498065625218, 16017463672140861567617
Offset: 1
Examples
(1-1/(2+1)) = 2/3, so a(1) = 2; (1-1/(2+1/(3-1))) = 3/5, so a(2) = 3; (1-1/(2+1/(3-1/(4+1)))) = 19/33, so a(3) = 19; (1-1/(2+1/(3-1/(4+1/(5-1))))) = 64/111, so a(4) = 64.
Links
- Robert Israel, Table of n, a(n) for n = 1..448
- Peter Bala, A note on A262957 and A263295
Crossrefs
Programs
-
Maple
P[1]:= 2: P[2]:= 3: Q[1]:= 3; Q[2]:= 5; for i from 2 to 100 do P[i+1]:= ((-1)^i*(i-1) + i^2 + 2*i)/(i-(-1)^i)*P[i] + (1 + (i+1)*(-1)^i)/((-1)^i-i)*P[i-1]; Q[i+1]:= ((-1)^i*(i-1) + i^2 + 2*i)/(i-(-1)^i)*Q[i] + (1 + (i+1)*(-1)^i)/((-1)^i-i)*Q[i-1]; od: seq(numer(P[i]/Q[i]),i=1..100); # Robert Israel, Dec 22 2015
-
PARI
a(n) = if(n%2==0, s=-1, s=1); t=1; while(n>-1, t=n+1+s/t; n--; s=-s); denominator(t=1/t) vector(30, n, a(n)) \\ Mohamed Sabba, Dec 22 2015
Extensions
More terms from Mohamed Sabba, Dec 22 2015
Comments