A362534 Numerators of the ratio of the symmetry-constrained bound to the adiabatic bound on polarization transfer in AXn spin-1/2 systems.
1, 1, 6, 6, 15, 15, 140, 140, 315, 315, 1386, 1386, 3003, 3003, 51480, 51480, 109395, 109395, 92378, 92378, 969969, 969969, 2704156, 2704156, 16900975, 16900975, 70204050, 70204050, 145422675, 145422675, 4808643120, 4808643120, 9917826435, 9917826435, 40838108850, 40838108850
Offset: 1
Links
- G. C. Chingas, A. N. Garroway, W. B. Moniz, and R. D. Bertrand, Adiabatic J cross-polarization in liquids for signal enhancement in NMR, Journal of Chemical Physics, 102:8 (1980), 2526-2528 (page 1, equation 2 gives an expression for the adiabatic bounds).
- Malcolm H. Levitt, Symmetry constraints on spin dynamics: Application to hyperpolarized NMR, Journal of Chemical Physics, 102:8 (2016).
- Ole W. Sørensen, A universal bound on spin dynamics, Journal of Magnetic Resonance, 262 (1990) (appendix gives proof of the expression for symmetry constrained bounds).
Programs
-
Mathematica
Table[Numerator[Ceiling[n/2] (2^n Binomial[n, Ceiling[n/2]]^-1 - 1 )^-1], {n, 1, 20}]
-
PARI
a(n) = numerator(ceil(n/2)/(2^(n)*binomial(n,ceil(n/2))^(-1) - 1)); \\ Michel Marcus, Apr 25 2023
Formula
a(n) = numerator(ceiling(n/2)/(2^(n)*binomial(n,ceiling(n/2))^(-1) - 1)).
Comments