cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346590 Decimal expansion of lim_{n->infinity} A262957(n)/A263295(n).

Original entry on oeis.org

5, 7, 6, 6, 3, 3, 3, 8, 9, 7, 3, 0, 1, 8, 4, 3, 9, 2, 3, 9, 7, 8, 9, 1, 7, 4, 9, 7, 8, 2, 9, 1, 3, 9, 2, 5, 7, 9, 6, 1, 4, 9, 4, 3, 5, 2, 7, 5, 7, 1, 0, 8, 3, 9, 8, 4, 1, 1, 0, 4, 1, 9, 1, 8, 0, 7, 6, 4, 8, 3, 5, 4, 4, 0, 1, 2, 4, 4, 0, 2, 0, 2, 0, 3, 1, 8, 2, 2, 6, 4
Offset: 0

Views

Author

Hugo Pfoertner, Jul 25 2021

Keywords

Comments

See A262957 for more information and references.

Examples

			0.5766333897301843923978917497829139257961494352757108398411...
		

Crossrefs

A262957 Numerators of the n-th iteration of the alternating continued fraction formed from the positive integers, starting with (1 - ...).

Original entry on oeis.org

2, 3, 19, 64, 538, 2833, 29169, 210308, 2572158, 23595915, 334778571, 3732092084, 60305234822, 791741083537, 14359827157009, 217037153818264, 4366918714540522, 74685204276602819, 1651116684587556019, 31524723785455714840, 759659139498065625218, 16017463672140861567617
Offset: 1

Views

Author

Mohamed Sabba, Nov 19 2015

Keywords

Comments

As n->inf, a(n)/A263295(n) converges to 0.57663338973... (A346590); this number has a surprisingly elegant standard continued fraction representation of [0; 1, 1, 2, 1, 3, 4, 1, 5, 6, 1, 7, 8, ...].
From Robert Israel, Dec 22 2015: (Start)
a(n) is the numerator of b(n)/c(n) where
b(1) = 2, b(2) = 3, c(1) = 3, c(2) = 5,
b(n+1) = (((-1)^n*(n-1)+n*(n+2))*b(n) - (1+(-1)^n*(n+1))*b(n-1))/(n-(-1)^n),
c(n+1) = (((-1)^n*(n-1)+n*(n+2))*c(n) - (1+(-1)^n*(n+1))*c(n-1))/(n-(-1)^n).
Conjecture: b(n) and c(n) are coprime for all n, so that a(n) = b(n).
I have verified this for n <= 10000. (End)

Examples

			(1-1/(2+1)) = 2/3, so a(1) = 2;
(1-1/(2+1/(3-1))) = 3/5, so a(2) = 3;
(1-1/(2+1/(3-1/(4+1)))) = 19/33, so a(3) = 19;
(1-1/(2+1/(3-1/(4+1/(5-1))))) = 64/111, so a(4) = 64.
		

Crossrefs

Same principle as A244279 and A244280 - except here we begin with subtraction rather than addition.
Cf. A263295 (denominators), A346590.

Programs

  • Maple
    P[1]:= 2: P[2]:= 3:
    Q[1]:= 3; Q[2]:= 5;
    for i from 2 to 100 do
      P[i+1]:= ((-1)^i*(i-1) + i^2 + 2*i)/(i-(-1)^i)*P[i] + (1 + (i+1)*(-1)^i)/((-1)^i-i)*P[i-1];
      Q[i+1]:= ((-1)^i*(i-1) + i^2 + 2*i)/(i-(-1)^i)*Q[i] + (1 + (i+1)*(-1)^i)/((-1)^i-i)*Q[i-1];
    od:
    seq(numer(P[i]/Q[i]),i=1..100); # Robert Israel, Dec 22 2015
  • PARI
    a(n) = if(n%2==0, s=-1, s=1); t=1; while(n>-1, t=n+1+s/t; n--; s=-s); denominator(t=1/t)
    vector(30, n, a(n)) \\ Mohamed Sabba, Dec 22 2015

Extensions

More terms from Mohamed Sabba, Dec 22 2015
Showing 1-2 of 2 results.