cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244280 Denominators of the n-th iteration of the alternating continued fraction of the positive integers, initiated with (1 + ...).

Original entry on oeis.org

2, 2, 11, 27, 202, 870, 8129, 50681, 570638, 4673558, 61724211, 627102091, 9514420518, 115483788186, 1980202320561, 27962630844865, 534877446987082, 8615820301234778, 181912525664114699, 3292162161484924619, 76056192127792619858, 1527880958525256735838
Offset: 1

Views

Author

Mohamed Sabba, Jun 24 2014

Keywords

Comments

As n-->inf, a(n) converges to 0.628736607098954801603428...
This is the result of taking the denominator of a continued fraction with alternating signs a(n) = 1/(1+1/(2-1/(3+1/(4-...1/(n +/- 1))))), where addition follows an odd number and subtraction follows an even number.

Examples

			a(1) = 1/(1+1) = 1/2;
a(2) = 1/(1+1/(2-1)) = 1/2;
a(3) = 1/(1+1/(2-1/(3+1))) = 7/11;
a(4) = 1/(1+1/(2-1/(3+1/(4-1)))) = 17/27.
		

Crossrefs

Cf. A244279 (Numerators).

Programs

  • Maple
    seq(denom(numtheory:-cfrac([0, [1,1], seq([(-1)^j,j],j=2..n),[(-1)^(n+1),1]])), n = 1..40); # Robert Israel, Jan 17 2016
  • PARI
    a(n) = if(n%2==0,s=-1,s=1); t=1; while(n>0, t=n+s/t; n--; s=-s); denominator(t=1/t)
    vector(30, n, a(n)) \\ Colin Barker, Jul 20 2014

Extensions

More terms from Colin Barker, Jul 20 2014

A262957 Numerators of the n-th iteration of the alternating continued fraction formed from the positive integers, starting with (1 - ...).

Original entry on oeis.org

2, 3, 19, 64, 538, 2833, 29169, 210308, 2572158, 23595915, 334778571, 3732092084, 60305234822, 791741083537, 14359827157009, 217037153818264, 4366918714540522, 74685204276602819, 1651116684587556019, 31524723785455714840, 759659139498065625218, 16017463672140861567617
Offset: 1

Views

Author

Mohamed Sabba, Nov 19 2015

Keywords

Comments

As n->inf, a(n)/A263295(n) converges to 0.57663338973... (A346590); this number has a surprisingly elegant standard continued fraction representation of [0; 1, 1, 2, 1, 3, 4, 1, 5, 6, 1, 7, 8, ...].
From Robert Israel, Dec 22 2015: (Start)
a(n) is the numerator of b(n)/c(n) where
b(1) = 2, b(2) = 3, c(1) = 3, c(2) = 5,
b(n+1) = (((-1)^n*(n-1)+n*(n+2))*b(n) - (1+(-1)^n*(n+1))*b(n-1))/(n-(-1)^n),
c(n+1) = (((-1)^n*(n-1)+n*(n+2))*c(n) - (1+(-1)^n*(n+1))*c(n-1))/(n-(-1)^n).
Conjecture: b(n) and c(n) are coprime for all n, so that a(n) = b(n).
I have verified this for n <= 10000. (End)

Examples

			(1-1/(2+1)) = 2/3, so a(1) = 2;
(1-1/(2+1/(3-1))) = 3/5, so a(2) = 3;
(1-1/(2+1/(3-1/(4+1)))) = 19/33, so a(3) = 19;
(1-1/(2+1/(3-1/(4+1/(5-1))))) = 64/111, so a(4) = 64.
		

Crossrefs

Same principle as A244279 and A244280 - except here we begin with subtraction rather than addition.
Cf. A263295 (denominators), A346590.

Programs

  • Maple
    P[1]:= 2: P[2]:= 3:
    Q[1]:= 3; Q[2]:= 5;
    for i from 2 to 100 do
      P[i+1]:= ((-1)^i*(i-1) + i^2 + 2*i)/(i-(-1)^i)*P[i] + (1 + (i+1)*(-1)^i)/((-1)^i-i)*P[i-1];
      Q[i+1]:= ((-1)^i*(i-1) + i^2 + 2*i)/(i-(-1)^i)*Q[i] + (1 + (i+1)*(-1)^i)/((-1)^i-i)*Q[i-1];
    od:
    seq(numer(P[i]/Q[i]),i=1..100); # Robert Israel, Dec 22 2015
  • PARI
    a(n) = if(n%2==0, s=-1, s=1); t=1; while(n>-1, t=n+1+s/t; n--; s=-s); denominator(t=1/t)
    vector(30, n, a(n)) \\ Mohamed Sabba, Dec 22 2015

Extensions

More terms from Mohamed Sabba, Dec 22 2015

A263295 Denominators of the n-th iteration of the alternating continued fraction formed from the positive integers, starting with (1 - ...).

Original entry on oeis.org

3, 5, 33, 111, 933, 4913, 50585, 364717, 4460647, 40920133, 580574377, 6472209467, 104581586665, 1373040648769, 24902871413201, 376386726269561, 7573128424949291, 129519388933667493, 2863373356440803473, 54670305859684290279, 1317404009250178503245
Offset: 1

Views

Author

Mohamed Sabba, Nov 20 2015

Keywords

Comments

As n->inf, A262957(n)/a(n) converges to 0.57663338973018...; this number has a surprisingly elegant standard continued fraction representation: [0; 1, 1, 2, 1, 3, 4, 1, 5, 6, 1, 7, 8, ...].

Examples

			(1-1/(2+1)) = 2/3, so a(1) = 3;
(1-1/(2+1/(3-1))) = 3/5, so a(2) = 5;
(1-1/(2+1/(3-1/(4+1)))) = 19/33, so a(3) = 33;
(1-1/(2+1/(3-1/(4+1/(5-1))))) = 64/111, so a(4) = 111.
		

Crossrefs

Same principle as A244279 and A244280 - except here we begin with subtraction rather than addition.
Cf. A262957 (numerators).

Programs

  • PARI
    a(n) = if(n%2==0, s=-1, s=1); t=1; while(n>0, t=n+1+s/t; n--; s=-s); denominator(t=1/t)
    vector(30, n, a(n)) \\ corrected by Mohammed Sabba, Dec 22 2015

Extensions

More terms from Mohamed Sabba, Dec 22 2015
Showing 1-3 of 3 results.