A262958 Numbers whose base-b expansions, for both b=3 and b=4, include no digits other than 1 and b-1.
1, 5, 7, 13, 23, 53, 125, 215, 373, 1367, 1373, 1375, 3551, 4093, 5471, 5495, 5503, 30581, 30589, 32765, 32767, 56821, 56831, 89557, 96119, 96215, 96223, 97655, 98135, 98141, 98143, 98167, 98293, 98303, 351743, 352093, 521599, 521693, 521717, 521719, 524119, 524149, 875893, 875903, 884725, 884735
Offset: 1
Examples
53 is 1222 in base 3 and 311 in base 4; it only uses the digit 1 or the largest digit in the two bases and is therefore a term. Similarly 215 is 21222 in base 3 and 3113 in base 4 so it is also a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@ 1000000, Last@ DigitCount[#, 3] == 0 && Total@ Rest@ Drop[DigitCount[#, 4], {3}] == 0 &] (* Michael De Vlieger, Oct 05 2015 *) Join[{1,5},Flatten[Table[Select[FromDigits[#,3]&/@Tuples[{1,2},n], Union[ IntegerDigits[ #,4]] =={1,3}&],{n,20}]]] (* Harvey P. Dale, Jun 14 2016 *)
-
PARI
is(n)=!setsearch(Set(digits(n,3)),0) && #setintersect(Set(digits(n,4)),[0,2])==0 \\ Charles R Greathouse IV, Oct 12 2015
-
Python
from gmpy2 import digits def f1(n): s = digits(n,3) m = len(s) for i in range(m): if s[i] == '0': return(int(s[:i]+'1'*(m-i),3)) return n def f2(n): s = digits(n,4) m = len(s) for i in range(m): if s[i] == '0': return(int(s[:i]+'1'*(m-i),4)) if s[i] == '2': return(int(s[:i]+'3'+'1'*(m-i-1),4)) return n A262958_list = [] n = 1 for i in range(10**4): m = f2(f1(n)) while m != n: n, m = m, f2(f1(m)) A262958_list.append(m) n += 1 # Chai Wah Wu, Oct 30 2015
Comments