A262968 Expansion of phi(-q^6) / phi(-q) in powers of q where phi() is a Ramanujan theta function.
1, 2, 4, 8, 14, 24, 38, 60, 92, 138, 204, 296, 424, 600, 840, 1164, 1598, 2176, 2940, 3944, 5256, 6960, 9164, 12000, 15634, 20270, 26160, 33616, 43020, 54840, 69648, 88140, 111164, 139748, 175136, 218832, 272646, 338760, 419792, 518880, 639780, 786976, 965820
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 14*q^4 + 24*q^5 + 38*q^6 + 60*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A262967.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^6] / EllipticTheta[ 4, 0, q], {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^12 + A)), n))};
Formula
Expansion of eta(q^2) * eta(q^6)^2 / (eta(q)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 2, 1, 2, 1, 2, -1, 2, 1, 2, 1, 2, 0, ...].
a(n) = A262967(3*n).
a(n) ~ 5^(1/4) * exp(sqrt(5*n/6)*Pi) / (2^(9/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
Comments