cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262991 Number of squarefree numbers among the parts of the partitions of n into two parts.

Original entry on oeis.org

0, 2, 2, 4, 3, 5, 5, 6, 6, 7, 7, 9, 8, 10, 10, 11, 11, 12, 12, 14, 13, 15, 15, 16, 16, 17, 17, 18, 17, 19, 19, 20, 20, 22, 22, 23, 23, 25, 25, 26, 26, 28, 28, 30, 29, 30, 30, 31, 31, 31, 31, 33, 32, 33, 33, 34, 34, 36, 36, 38, 37, 39, 39, 39, 39, 41, 41, 43
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 06 2015

Keywords

Examples

			a(5)=3; there are 2 partitions of 5 into two parts: (4,1) and (3,2). Three of the parts in the partitions are squarefree, so a(5)=3.
a(6)=5; there are 3 partitions of 6 into two parts: (5,1), (4,2) and (3,3). Five of the parts in the partitions are squarefree, so a(6)=5.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A262991:=n->add(mobius(i)^2+mobius(n-i)^2, i=1..floor(n/2)): seq(A262991(n), n=1..100);
  • Mathematica
    Table[Sum[MoebiusMu[i]^2 + MoebiusMu[n - i]^2, {i, Floor[n/2]}], {n, 100}]
    Table[Count[Flatten[IntegerPartitions[n,{2}]],?SquareFreeQ],{n,70}] (* _Harvey P. Dale, Aug 18 2021 *)
  • PARI
    vector(100, n, sum(k=1, n\2, moebius(k)^2 + moebius(n-k)^2)) \\ Altug Alkan, Oct 07 2015

Formula

a(n) = Sum_{i=1..floor(n/2)} mu(i)^2 + mu(n-i)^2, where mu is the Möebius function (A008683).
a(n) = A262868(n) + A262869(n).
a(n) = A294101(n) + 2*A071068(n). - Wesley Ivan Hurt, Jul 16 2025