A262992 Sum of the squarefree numbers among the partition parts of n into two parts.
0, 2, 3, 8, 6, 14, 17, 24, 24, 29, 34, 51, 45, 65, 72, 87, 87, 104, 104, 133, 123, 155, 166, 189, 189, 202, 215, 229, 215, 259, 274, 305, 305, 355, 372, 407, 407, 463, 482, 521, 521, 583, 604, 669, 647, 670, 693, 740, 740, 740, 740, 817, 791, 844, 844, 899
Offset: 1
Examples
a(3)=3; there is one partition of 3 into two parts: (2,1). The sum of the squarefree parts of this partition is 2+1=3, so a(3)=3. a(5)=6; there are two partitions of 5 into two parts: (4,1) and (3,2). The sum of the squarefree parts of these partitions is 3+2+1=6, so a(5)=6.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Index entries for sequences related to partitions
Programs
-
Maple
with(numtheory): A262992:=n->add(i*mobius(i)^2 + (n-i)*mobius(n-i)^2, i=1..floor(n/2)): seq(A262992(n), n=1..100);
-
Mathematica
Table[Sum[i*MoebiusMu[i]^2 + (n - i)*MoebiusMu[n - i]^2, {i, Floor[n/2]}], {n, 100}]
-
PARI
vector(100, n, sum(k=1, n\2, k*moebius(k)^2 + (n-k)*moebius(n-k)^2)) \\ Altug Alkan, Oct 07 2015
-
PARI
a(n)=my(s, k2, m=n-1); forsquarefree(k=1, sqrtint(m), k2=k[1]^2; s+= k2*binomial(m\k2+1, 2)*moebius(k)); s + (n%4==2 && issquarefree(n/2))*n/2 \\ Charles R Greathouse IV, Jan 13 2018