cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263002 Expansion of (f(-x^5) / f(-x))^2 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 5, 10, 20, 34, 61, 100, 165, 260, 408, 620, 940, 1390, 2045, 2960, 4257, 6040, 8525, 11900, 16522, 22738, 31130, 42300, 57210, 76872, 102834, 136800, 181230, 238900, 313725, 410160, 534330, 693330, 896655, 1155420, 1484274, 1900420, 2426215, 3088100
Offset: 0

Views

Author

Michael Somos, Oct 07 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of 5-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 34*x^5 + 61*x^6 + 100*x^7 + ...
G.f. = q + 2*q^4 + 5*q^7 + 10*q^10 + 20*q^13 + 34*q^16 + 61*q^19 + 100*q^22 + ...
		

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Cf. A058511.
Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
    S := L -> seriestolist(series(LRBP(L,80),q,60));
    S(5); # N. J. A. Sloane, Oct 20 2019
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5] / QPochhammer[ x])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^5 + A) / eta(x + A))^2, n))};

Formula

Expansion of q^(-1/3) * (eta(q^5) / eta(q))^2 in powers of q.
Euler transform of period 5 sequence [ 2, 2, 2, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (45 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A058511.
Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u - v^2) * (v - u^2) - 4*u^2*v^2.
Convolution inverse is A058511.
a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 3^(1/4) * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
See Maple code for a simple g.f. - N. J. A. Sloane, Oct 20 2019