A263158 a(n) = Sum_{k=1..n} Stirling2(n,k)*(k!)^3.
1, 9, 241, 15177, 1871761, 400086249, 136109095921, 69234116652297, 50204612238691921, 49984961118827342889, 66285608345755685396401, 114183585213704219683871817, 250186610841184605935378238481, 684906688327788169186039802989929, 2306818395080969813211747978667981681
Offset: 1
Keywords
Programs
-
Maple
# This program is intended for quick evaluation of a(n) with(combinat): a:= n-> add(stirling2(n, k)*((k)!)^3, k=1..n): seq(a(n), n=1..15); # Maple program for the evaluation and verification of the infinite series representation: a:= n-> evalf(sum(k^n*evalf(MeijerG([[1],[]],[[1+k,1+k,1+k],[]],1))/k!, k=0..infinity)); # n=1, 2, ... . # This infinite series is slowly converging and the use of the above formula will presumably not give the result in a reasonable time. Instead it is practical to replace the upper summation limit k = infinity by some kmax, say kmax = 5000. For example, this yields for a(3) = 241 the approximation 240.99999999948 in about 90 sec. Increasing kmax improves this approximation.
-
Mathematica
Table[Sum[StirlingS2[n, k] ((k)!)^3, {k, n}], {n, 15}]
Formula
Representation as a sum of infinite series of special values of Meijer G functions, a(n) = Sum_{k>=0} MeijerG([[1],[]],[[1+k,1+k,1+k],[]],1)*k^n/k!. The Meijer G functions in the above formula cannot be represented through any other special function.
a(n) ~ n!^3. - Vaclav Kotesovec, Jul 12 2018