A263053 Number of (n+1) X 2 0..1 arrays with each row and column not divisible by 3, read as a binary number with top and left being the most significant bits.
2, 2, 10, 10, 42, 42, 170, 170, 682, 682, 2730, 2730, 10922, 10922, 43690, 43690, 174762, 174762, 699050, 699050, 2796202, 2796202, 11184810, 11184810, 44739242, 44739242, 178956970, 178956970, 715827882, 715827882, 2863311530, 2863311530
Offset: 1
Keywords
Examples
All solutions for n=4: 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Programs
-
Python
[int(2**n - 2/3 -((-2)**n)/3) for n in range(1,40)] # Pascal Bisson, Feb 03 2022
Formula
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3).
From Colin Barker, Jan 01 2019: (Start)
G.f.: 2*x / ((1 - x)*(1 - 2*x)*(1 + 2*x)).
a(n) = 2^n - 2/3 - (-2)^n/3.
(End)
a(n) = 2*A052992(n). - Pascal Bisson, Feb 03 2022
Comments