A263071 Number of lattice paths from {9}^n to {0}^n using steps that decrement one or more components by one.
1, 1, 1462563, 191731486403293, 496505991344667030490635, 12024609569670508078686022988554381, 1742079663955078309800553960117733249663480043, 1121241285685659360225420876424590015281785102622410968973
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
Crossrefs
Row n=9 of A262809.
Programs
-
Mathematica
With[{r = 9}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 10}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
Formula
a(n) ~ 3*sqrt(Pi) * (9^8/8!)^n * n^(9*n+1/2) / (2^(9/2) * exp(9*n) * (log(2))^(9*n+1)). - Vaclav Kotesovec, Mar 23 2016