A263072 Number of lattice paths from {10}^n to {0}^n using steps that decrement one or more components by one.
1, 1, 8097453, 9850349744182729, 331910222316215755702672557, 134565509066155510620216211257550349401, 399017534874989738901076297624977315332337599285373, 6213239693876579408708842528154872834110410698303331900339282569
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
Crossrefs
Row n=10 of A262809.
Programs
-
Mathematica
With[{r = 10}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 10}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
Formula
a(n) ~ sqrt(10*Pi) * (10^9/9!)^n * n^(10*n+1/2) / (32 * exp(10*n) * (log(2))^(10*n+1)). - Vaclav Kotesovec, Mar 23 2016
Comments