A263087 a(n) = A060990(n^2); number of solutions to x - d(x) = n^2, where d(x) is the number of divisors of x (A000005).
2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10082
Crossrefs
Programs
-
PARI
A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200. A263087(n) = A060990(n^2); for(n=0, 10082, write("b263087.txt", n, " ", A263087(n)));
-
Scheme
(define (A263087 n) (A060990 (A000290 n)))