A263106 Semiprimes such that the leftward cyclic permutation of its decimal digits is also semiprime.
4, 6, 9, 15, 22, 26, 33, 39, 49, 51, 55, 58, 62, 77, 85, 93, 94, 111, 122, 129, 134, 141, 145, 155, 158, 159, 161, 177, 178, 183, 185, 187, 202, 206, 214, 226, 254, 262, 298, 303, 309, 314, 321, 339, 341, 355, 358, 362, 371, 381, 391, 393, 394, 403, 407, 413
Offset: 1
Examples
15 = 3 * 5, 51 = 3 * 17; 889 = 7 * 17, 898 = 2 * 449.
Links
- Zak Seidov, Table of n, a(n) for n = 1..65049 (all terms up to 10^6)
Programs
-
Mathematica
Select[Range[4, 1000], 2 == PrimeOmega[#] == PrimeOmega[FromDigits[RotateLeft[IntegerDigits[#]]]] &]
-
PARI
shl(n)=if(n<10,return(n)); my(d=digits(n)); fromdigits(concat(d[2..#d], d[1])) is(n)=bigomega(n)==2 && bigomega(shl(n))==2 \\ Charles R Greathouse IV, Oct 12 2015
Comments